Best practice guide for the safe handling and use of nanoparticles in packaging industries

A novel “Best Practice Guide for the Safe Handling and Use of Nanoparticles in Packaging Industries” is now available to support those working with nanomaterials at all stages in the development of packaging products. NanoSafePack mini guide
The Best Practice Guide is the final output of NanoSafePack, a 36 month project funded under the European Union’s Seventh Framework Programme (FP7). The development of the guide was informed by novel research activities undertaken as part of this project, as well as wider state-of-the-art knowledge in the field of nanosafety.

Primarily intended for use by SMEs and larger companies involved in the manufacture of polymer-based nanocomposites for packaging applications, the Best Practice Guide provides practical advice and recommendations which are easy to understand, use and apply in an industrial setting. This includes technical information concerning the specific applications and properties of nanofillers and polymer-based nanocomposites, as well as new scientific knowledge and guidance on environmental, health, and safety issues.


To accompany the full version of Best Practice Guide, a shorter Mini-Guide has also been developed, which is freely available in five languages: English, French, Spanish, Portuguese, and Italian. The Mini-Guide, available to download from the NanoSafePack website, provides an overview of:



  • the main benefits of nanotechnology in the packaging industry;

  • the structure and contents of the full version of the Best Practice Guide; and

  • recommendations for the safe handling and use of nanofillers and polymer-based nanocomposites, demonstrated using a number of case studies.


Further information and contact details are provided within the Mini-Guide on how to obtain the full version of the Best Practice Guide. About the NanoSafePack project The research leading to the development of the best practice guide has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under Grant Agreement No. 286362 – NanoSafePack. The main aim of the NanoSafePack project was to develop a best practices guide to allow the safe handling and use of nanomaterials in packaging industries, considering integrated strategies to control the exposure to nanoparticles in industrial settings, and provide SMEs with scientific data to minimise and control nanoparticle release and migration from the polymer nanocomposites placed on the market. To achieve this aim, a complete hazard and exposure assessment was conducted to obtain new scientific data about the safety of polymer composites reinforced using nanometer-sized particles. An evaluation of the effectiveness of risk management measures was also undertaken in order to select and design practical and cost effective strategies for implementation in industrial settings. In addition, a life cycle assessment of nanocomposites was performed, by evaluating their impacts during the processes of manufacture, use and disposal. Results of these studies have been used in combination with state-of-the-art knowledge in the field of nanosafety to inform the development of this guide. The NanoSafePack Consortium consists of 7 European organisations, namely: Techni-Plasper, S.L.; Centro Español de Plásticos (CEP); Associação Portuguesa da Indústria de Plásticos (APIP); European Plastics Converters (EuPC); Instituto Tecnológico del Embalaje, Transporte y Logística (Itene); Institute of Occupational Medicine (IOM); and Tec Star s.r.l.
read more "Best practice guide for the safe handling and use of nanoparticles in packaging industries"

DNA nanoswitches reveal how life's molecules connect (w/video)

A complex interplay of molecular components governs almost all aspects of biological sciences — healthy organism development, disease progression, and drug efficacy are all dependent on the way life's molecules interact in the body. Understanding these bio–molecular interactions is critical for the discovery of new, more effective therapeutics and diagnostics to treat cancer and other diseases, but currently requires scientists to have access to expensive and elaborate laboratory equipment. Now, a new approach developed by researchers at the Wyss Institute for Biologically Inspired Engineering, Boston Children's Hospital and Harvard Medical School promises a much faster and more affordable way to examine bio–molecular behavior, opening the door for scientists in virtually any laboratory world–wide to join the quest for creating better drugs. The findings are published in February's issue of ("DNA nanoswitches: a quantitative platform for gel-based biomolecular interaction analysis").

[embedded content]


"Bio–molecular interaction analysis, a cornerstone of biomedical research, is traditionally accomplished using equipment that can cost hundreds of thousands of dollars," said Wyss Associate Faculty member Wesley P. Wong, Ph.D., senior author of study. "Rather than develop a new instrument, we've created a nanoscale tool made from strands of DNA that can detect and report how molecules behave, enabling biological measurements to be made by almost anyone, using only common and inexpensive laboratory reagents." Wong, who is also Assistant Professor at Harvard Medical School in the Departments of Biological Chemistry & Molecular Pharmacology and Pediatrics and Investigator at the Program in Cellular and Molecular Medicine at Boston Children's Hospital, calls the new tools DNA "nanoswitches". Nanoswitches comprise strands of DNA onto which molecules of interest can be strategically attached at various locations along the strand. Interactions between these molecules, such as successful binding of a drug compound with its intended target, such as a protein receptor on a cancer cell, cause the shape of the DNA strand to change from an open and linear shape to a closed loop. Wong and his team can easily separate and measure the ratio of open DNA nanoswitches vs. their closed counterparts through gel electrophoresis, a simple lab procedure already in use in most laboratories, that uses electrical currents to push DNA strands through small pores in a gel, sorting them based on their shape. "Our DNA nanoswitches dramatically lower barriers to making traditionally complex measurements," said co–first author Ken Halvorsen, formerly of the Wyss Institute and currently a scientist at the RNA Institute at University of Albany. "All of these supplies are commonly available and the experiments can be performed for pennies per sample, which is a staggering comparison to the cost of conventional equipment used to test bio–molecular interactions." To encourage adoption of this method, Wong and his team are offering free materials to colleagues who would like to try using their DNA nanoswitches. "We've not only created starter kits but have outlined a step–by–step protocol to allow others to immediately implement this method for research in their own labs, or classrooms," said co–first author Mounir Koussa, a Ph.D. candidate in neurobiology at Harvard Medical School. "Wesley and his team are committed to making an impact on the way bio–molecular research is done at a fundamental level, as is evidenced by their efforts to make this technology accessible to labs everywhere," said Wyss Institute Founding Director Donald Ingber, M.D., Ph.D., who is also the Judah Folkman Professor of Vascular Biology at Boston Children's Hospital and Harvard Medical School and a Professor of Bioengineering at Harvard SEAS. "Biomedical researchers all over the world can start using this new method right away to investigate how biological compounds interact with their targets, using commonly–available supplies at very low cost." Anyone interested in learning more about how to use DNA nanoswitches in their lab can watch a protocol video series and request free materials for making them at http://bit.ly/1A5N6EP.
read more "DNA nanoswitches reveal how life's molecules connect (w/video)"

Pinholes are pitfalls for high performance solar cells

The most popular next-generation solar cells under development may have a problem – the top layer is full of tiny pinholes, researchers at the Okinawa Institute of Science and Technology Graduate University in Japan have found. The majority of high-performance solar cells under development use a combination of materials including perovskite and spiro-MeOTAD. These cells are far cheaper than traditional silicon-based solar cells, and their efficiency has been increasing significantly in the past few years. But perovskite, which is the layer that converts sunlight to electricity, degrades quickly. pinholes Atomic Force Microscopy (AFM) images show pinholes in the spiro-MeOTAD when it is first prepared (top) and after air exposure for 24 hours (bottom). The average diameter of the pinholes is about 135 nanometers, with some as large as two microns. OIST researchers believe they have identified a key culprit for this problem. Miniscule pinholes in the spiro-MeOTAD layer -- so small they cannot be seen even with a light microscope -- may be creating easy pathways for water and other gas molecules in air to diffuse through the thin film and degrade the perovskite. “These pinholes may play a major role in the degradation of the lifetime of the solar cells,” said Zafer Hawash, a PhD student at OIST who discovered the pinholes. His findings were recently published in the journal ("Air-Exposure Induced Dopant Redistribution and Energy Level Shifts in Spin-Coated Spiro-MeOTAD Films"). Hawash noticed the pinholes while analyzing how independent components of air, like water, oxygen and nitrogen, interact with spiro-MeOTAD. At first he didn’t think they were important, but when he started looking into it, he found no mention of them in the scientific literature. “No one has really mentioned this,” said Hawash, who works in OIST’sEnergy Materials and Surface Sciences Unit. “I started realizing it was something important to report, to let people know these pinholes exist and that we should get rid of them to get better lifetime.” The pinholes appear to be related to how the spiro-MeOTAD layer is usually made – a solution is spin-coated onto a base layer to create a thin film a fraction of the thickness of a human hair. Another preparation method, vacuum evaporation, does not produce the pinholes, but is less convenient to use, explained Dr. Luis Ono, an Energy Materials and Surface Sciences Unit group leader and paper co-author. The OIST team is looking into how they can eliminate the pinholes while still keeping the cost low, perhaps by tweaking preparation process or adding other ingredients. “Currently we are making efforts in finding a way to fix the problem of the pinholes,” said Professor Yabing Qi, who heads the Energy Materials and Surface Sciences Unit. This latest finding builds on the Qi’s lab ongoing work to overcome the instabilities in perovskite solar cells and develop low-cost solar power.
read more "Pinholes are pitfalls for high performance solar cells"

DIADEMS - finding the sensor behind the sparkle

Diamonds – highly desirable lumps of carbon. But while their use to jewellers is well known, their hidden secrets are being revealed by the DIADEMS project. By modifying the structure of a diamond crystal, the project creates a new material that could be used in applications, from the creation of smart medicines to the next generation computers. The EU project is helping Europe stay at the forefront of research into atomic scale sensors. diadems project logo
The DIADEMS (DIAmond Devices Enabled Metrology and Sensing) project is replacing a single atom in a diamond crystal with one of nitrogen, known as ‘doping’. By trapping nitrogen in the crystal, researchers can produce an atom-like structure with intrinsic magnetic properties obeying quantum mechanics.

‘This means that we can ultimately create tiny sensors that detect small magnetic signals. For example, these magnetic signals would allow us to monitor the electrical activity of neurons on a diamond slide and see how they operate together,’ explains Dr Thierry Debuisschert, project coordinator of DIADEMS, based at Thales, France.


‘In the future, we may be able to see whether or not a neuron is responding to a chemical being used for treatment.’ This outcome would benefit research into neurodegenerative diseases such as Alzheimer’s.


Life sciences, physics, chemistry – wherever magnetic fields play a role, DIADEMS’ work could make a difference. A world of applications opening up The innovative ability to see how molecules react by reading changes in the spin of their electrons means researchers will be able to analyse exactly what is happening in chemical reactions at molecular and atomic scale. ‘A wide range of applications start to appear because we are able to monitor so precisely,’ says Debuisschert. Computing could benefit too as the sensors can be used in the development of small, high density storage discs with far greater capacity and reliability. ‘The capacity of data storage discs is getting ever bigger, squeezing the size of the magnetic domains used to store the information. By working at the atomic and molecular level, we could be able to control those storage devices at the scale required for high density storage,’ he adds. Results for research Debuisschert is fascinated by the combination of atomic physics and quantum mechanics and how it can yield practical applications. ‘We are in an industrial context, so we have to show that there are real, marketable applications at the end of the research.’ The fact that DIADEMS is using lab grown diamonds working at room temperature means once ready, its technology will be easier to apply and market. ‘Even so,’ says Debuisschert, ‘since we are still at a research level, EU funding at this stage is indispensable.’ The benefits of working at EU level While the project would not exist without the EU funding, Debuisschert feels a particularly important aspect of an EU-wide project is the collaboration between the 15 partners with a mix of academic and industrial partners. ‘We can be directly informed of all recent results coming out of EU labs, which saves a lot time, and we can share ideas in a way that is specific to European projects,’ he explains. ‘This helps us stay competitive in comparison with the big competitors abroad.’ The project which runs for four years, kicked off in September 2013. It is backed by EU support, via the Future and Emerging Technologies scheme, to the tune of EUR 6 million.
read more "DIADEMS - finding the sensor behind the sparkle"

Paper-based nanoparticle test kit detects dengue antibodies from saliva

Finding out whether you have been infected with dengue may soon be as easy as spitting into a rapid test kit. The Institute of Bioengineering and Nanotechnology (IBN) of A*STAR has developed a paper-based disposable device that will allow dengue-specific antibodies to be detected easily from saliva within 20 minutes. This device is currently undergoing further development for commercialization. Rapid Test Kit This is a 3-D model of IBN's rapid test kit that detects dengue-specific antibodies. (Image: IBN, A*STAR) IBN Executive Director Professor Jackie Y. Ying shared, "Our rapid diagnostic kit can detect a key dengue antibody from saliva that is present in early-stage secondary infection. The ability to differentiate between primary and secondary dengue infections makes it a valuable early diagnosis tool that would help to ensure timely treatment and proper care of patients." Patients with secondary infection, who have previously been infected with other serotypes of dengue virus, stand a higher risk of developing dengue hemorrhagic fever or dengue shock syndrome. According to Singapore's National Environment Agency, dengue fever and its more severe form, dengue hemorrhagic fever, are the most common mosquito-borne viral diseases in the world. This disease poses a serious health threat, and is a leading cause of illness and death in tropical and subtropical climates. There are four known serotypes of the dengue virus but no vaccine or medicine has been developed to treat the illness. The incubation period before symptoms develop generally ranges from 4 to 10 days after infection. Therefore, early diagnosis would enable the patient to receive prompt medical attention and avoid further complications. Currently, dengue infection is diagnosed in the laboratory by testing the patient's blood sample for the presence of dengue antigens or antibodies. IBN's device, on the other hand, is capable of detecting IgG, a dengue-specific antibody found at the onset of secondary infections, directly from saliva in one step. Unlike blood samples, saliva can be collected easily and painlessly for rapid point-of-care diagnostics. However, unlike other body fluids, it cannot be applied directly to commercially available test kits as it would cause the sensor nanoparticles to stick haphazardly to the test strip. In addition, conventional paper-based tests are not designed to handle the larger sample volume of saliva required. As described in the journal ("A stacking flow immunoassay for the detection of dengue-specific immunoglobulins in salivary fluid"), the IBN researchers used an innovative stacking flow design to overcome key challenges faced by existing lateral flow designs, such as those used in pregnancy test kits. In IBN's device, different flow paths are created for samples and reagents through a multiple stacked system. This allows the saliva sample to flow separately through a fiber glass matrix, which removes the substances that would interfere with the nanoparticle-based sensing system before it mixes with the sensor nanoparticles. IBN's device configuration also helps to regulate the flow in the test strip, generating uniform test lines for more accurate results. IBN's diagnostic kit can also be adapted to detect other infectious diseases such as HIV and Syphilis. The IBN researchers are also investigating the use of other common fluid samples, such as blood, urine and serum for rapid, high-sensitivity test kits. The Institute is currently collaborating with ARKRAY Inc., a pioneer in the field of automated analysis systems, to commercialize its paper-based diagnostic technology. In 2013, ARKRAY opened its first Asian research center outside Japan in IBN with an investment of S$9.1 million over five years. The research center is focused on developing novel detection kits for infectious diseases based on IBN's innovative diagnostic platforms. Mr. Atsushi Murakami, General Manager of the R&D Division of ARKRAY Inc., said: "We have developed an excellent working relationship with IBN over the past two years, and our research activities have progressed rapidly. Together, we will continue to focus on the successful commercialization of new technologies for the diagnosis of tropical infectious diseases." IBN has been focused on research in medical technologies since 2003, and has created unique devices and assays for the rapid and accurate diagnosis of diseases. The institute has an active portfolio of 500 patents/patent applications, of which 86 have been licensed. It has spun off seven companies in the medical technology sector and its innovations have attracted major interest from the industry.
read more "Paper-based nanoparticle test kit detects dengue antibodies from saliva"

The nanomedicines of the future will build on quantum chemistry

Quantum chemical calculations have been used to solve big mysteries in space. Soon the same calculations may be used to produce tomorrow’s cancer drugs. Some years ago research scientists at the University of Oslo in Norway were able to show that the chemical bonding in the magnetic fields of small, compact stars, so-called white dwarf stars, is different from that on Earth. Their calculations pointed to a completely new bonding mechanism between two hydrogen atoms. The news attracted great attention in the media. The discovery, which in fact was made before astrophysicists themselves observed the first hydrogen molecules in white dwarf stars, was made by UiO’s Centre for Theoretical and Computational Chemistry. They based their work on accurate quantum chemical calculations of what happens when atoms and molecules are exposed to extreme conditions. The research team is headed by Professor Trygve Helgaker, who for the last thirty years has taken the international lead on the design of a computer system for calculating quantum chemical reactions in molecules. Simen Reine (left) and Trygve Helgaker Quantum chemical models are used to form a picture of the forces and tensions at play between the atoms and electrons of a molecule,” says Simen Reine (left) and Trygve Helgaker, who for the last thirty years has taken the international lead on the design of a computer system for calculating quantum chemical reactions in molecules. Quantum chemical calculations are needed to explain what happens to the electrons’ trajectories within a molecule. Consider what happens when UV radiation sends energy-rich photons into your cells. This increases the energy level of the molecules. The outcome may well be that some of the molecules break up. This is exactly what happens when you sun-bathe. “The extra energy will affect the behaviour of electrons and can destroy the chemical bonding within the molecule. This can only be explained by quantum chemistry. The quantum chemical models are used to produce a picture of the forces and tensions at play between the atoms and the electrons of a molecule, and of what is required for a molecule to dissociate,” says Trygve Helgaker. The absurd world of the electrons The quantum chemical calculations solve the Schrödinger equation for molecules. This equation is fundamental to all chemistry and describes the whereabouts of all electrons within a molecule. But here we need to pay attention, for things are really rather more complicated than that. Your high school physics teacher will have told you that electrons circle the atom. Things are not that simple, though, in the world of quantum physics. Electrons are not only particles, but waves as well. The electrons can be in many places at the same time. It’s impossible to keep track of their position. However, there is hope. Quantum chemical models describe the electrons’ statistical positions. In other words, they can establish the probable location of each electron. The results of a quantum chemical calculation are often more accurate than what is achievable experimentally. Among other things, the quantum chemical calculations can be used to predict chemical reactions. This means that the chemists will no longer have to rely on guesstimates in the lab. It is also possible to use quantum chemical calculations in order to understand what happens in experiments. Enormous calculations The calculations are very demanding. “The Schrödinger equation is a highly complicated, partial differential equation, which cannot be accurately solved. Instead, we need to make do with heavy simulations”, says researcher Simen Kvaal. The computations are so demanding that the scientists use one of the University’s fastest supercomputers. “We are constantly stretching the boundaries of what is possible. We are restricted by the available machine capacity,” explains Helgaker. Ten years ago it took two weeks to carry out the calculations for a molecule with 140 atoms. Now it can be done in two minutes. “That’s 20,000 times faster than ten years ago. The computation process is now running 200 times faster because the computers have been doubling their speed every eighteen months. And the process is a further 100 times faster because the software has been undergoing constant improvement,” says senior engineer Simen Reine. This year the research group has used 40 million CPU hours, of which twelve million were on the University’s supercomputer, which is fitted with ten thousand parallel processors. This allows ten thousand CPU hours to be over and done with in 60 minutes. “We will always fill the computer’s free capacity. The higher the computational capacity, the bigger and more reliable the calculations.” Thanks to ever faster computers, the quantum chemists are able to study ever larger molecules. Today, it’s routine to carry out a quantum chemical calculation of what happens within a molecule of up to 400 atoms. By using simplified models it is possible to study molecules with several thousand atoms. This does, however, mean that some of the effects within the molecule are not being described in detail. The researchers are now getting close to a level which enables them to study the quantum mechanics of living cells. “This is exciting. The molecules of living cells may contain many hundred thousand atoms, but there is no need to describe the entire molecule using quantum mechanical principles. Consequently, we are already at a stage when we can help solve biological problems.” Hunting for the electrons of the insulin molecule The chemists are thus able to combine sophisticated models with simpler ones. “This will always be a matter of what level of precision and detail you require. The optimal approach would have been to use the Schrödinger equation for everything.” An insulin molecule consists of 782 atoms and 3,500 electrons Working with Aarhus University, Simen Reine has calculated the tensions between the electrons and atoms of an insulin molecule. An insulin molecule consists of 782 atoms and 3,500 electrons. (Illustration: Simen Reine-UiO) By way of compromise they can give a detailed description of every electron in some parts of the model, while in other parts they are only looking at average numbers. “We are always having to find a good balance between the details we need and those we don’t need.” Simen Reine has been using the team’s computer program, while working with Aarhus University, on a study of the insulin molecule. An insulin molecule consists of 782 atoms and 3,500 electrons. “All electrons repel each other, while at the same time being pulled towards the atom nuclei. The atom nuclei also repel each other. Nevertheless, the molecule remains stable. In order to study a molecule to a high level of precision, we therefore need to consider how all of the electrons move relative to one another. Such calculations are referred to as correlated equations and are very reliable.” A complete correlated equation of the insulin molecule takes nearly half a million CPU hours. If they were given the opportunity to run the program on the University’s supercomputer, the calculations would theoretically take two days. “In ten years, we’ll be able to make these calculations in two minutes.” Medically important Vice Rector Knut Fægri at the University of Oslo points out that quantum chemical calculations may become important to life sciences. “Quantum chemical calculations can help describe phenomena at a level that may be difficult to access experimentally, but may also provide support for interpreting and planning experiments. Today, the calculations will be put to best use within the fields of molecular biology and biochemistry,” says Knut Fægri. Associate Professor Michele Cascella at the Centre for Theoretical and Computational Chemistry has recently been recruited from Italy to introduce quantum chemistry into life sciences. “Quantum chemistry is a fundamental theory which is important for explaining molecular events, which is why it is essential to our understanding of biological systems,” says Michele Cascella. By way of an example, he refers to the analysis of enzymes. Enzymes are molecular catalysts that boost the chemical reactions within our cells. Cascella also points to nanomedicines, which are drugs tasked with distributing medicine round our bodies in a much more accurate fashion. “In nanomedicine we need to understand physical phenomena on a nano scale, forming as correct a picture as possible of molecular phenomena. In this context, quantum chemical calculations are important,” explains Michele Cascella. Proteins and enzymes Professor K. Kristoffer Andersson at the Department of Biosciences uses the simpler form of quantum chemical calculations to study the details of protein structures and the chemical atomic and electronic functions of enzymes. “It is important to understand the chemical reaction mechanism, and how enzymes and proteins work. Quantum chemical calculations will teach us more about how proteins go about their tasks, step by step. We can also use the calculations to look at activation energy, i.e. how much energy is required to reach a certain state. It is therefore important to understand the chemical reaction patterns in biological molecules in order to develop new drugs,” says Andersson. His research will also be useful in the search for cancer drugs. He studies radicals, which may be important to cancer. Among other things, he is looking at the metal ions function in proteins. These are ions with a large number of protons, neutrons and electrons. Photosynthesis Professor Einar Uggerud at the Department of Chemistry has uncovered an entirely new form of chemical bonding through sophisticated experiments and quantum chemical calculations. Working with research fellow Glenn Miller, Professor Uggerud has found an unusually fragile key molecule, in a kite-shaped structure, consisting of magnesium, carbon and oxygen. The molecule may provide a new understanding of photosynthesis. Photosynthesis, which forms the basis for all life, converts CO2 into sugar molecules. The molecule reacts so fast with water and other molecules that it has only been possible to study in isolation from other molecules, in a vacuum chamber. “Time will tell whether the molecule really has an important connection with photosynthesis,” says Einar Uggerud.
read more "The nanomedicines of the future will build on quantum chemistry"

Holes in valence bands of nanodiamonds discovered

Nanodiamonds are tiny crystals only a few nanometres in size. While they possess the crystalline structure of diamonds, their properties diverge considerably from those of their big brothers, because their surfaces play a dominant role in comparison to their extremely small volumes. Suspended in aqueous solutions, they could function as taxis for active substances in biomedical applications, for example, or be used as catalysts for splitting water. But how are the electronic properties of nanodiamonds deposited on a solid-state substrate different from those displayed by nanodiamonds in aqueous solutions? Dr. Tristan Petit working in the HZB team headed by Prof. Emad F. Aziz has now investigated this with the help of absorption and emission spectroscopy at BESSY II. Their results, just published in ("Valence holes observed in nanodiamonds dispersed in water"), demonstrate that nanodiamonds display valence holes in aqueous solutions, which are not observed when characterized as a thin film. nanodiamonds Nanodiamonds are tiny crystals only a few nanometres in size. (Image: Mohamed Sennour, MINES ParisTech) “The interaction between the nanodiamonds and the neighbouring molecules and ions is especially strong in water”, say Petit. The adsorption of active pharmaceutical ingredients on nanodiamonds can be influenced, for example, by adding salts or changing the pH value. Petit and his colleagues have now discovered that the electronic signature of surface states of nanodiamonds in aqueous dispersions are considerably different from those of nanodiamonds on a solid-state substrate. With the help of micro-jet technology developed by Emad Aziz at HZB, they examined liquid samples in vacuum using X-ray spectroscopy and developed a detailed picture of the filled and unfilled electron states in valence and conduction bands. Their results show that holes, i.e. missing electrons in the valence band, formed on the surfaces of the nanodiamonds in the aqueous dispersion. “This suggests that electrons at the surface of nanodiamonds are donated to the surrounding water molecules”, Petit suggests. The physicists suspect they might also influence the nanoparticles’ chemical, optical, and catalytic properties through changes to their electronic structure. They would like to determine in future studies whether the catalytic effect of nanodiamonds in aqueous environment can be increased in order to split water molecules into oxygen and hydrogen using light.
read more "Holes in valence bands of nanodiamonds discovered"

Nanoscale mirrored cavities amplify, connect quantum memories

The idea of computing systems based on controlling atomic spins just got a boost from new research performed at the Massachusetts Institute of Technology (MIT) and the U.S. Department of Energy's (DOE) Brookhaven National Laboratory. By constructing tiny "mirrors" to trap light around impurity atoms in diamond crystals, the team dramatically increased the efficiency with which photons transmit information about those atoms' electronic spin states, which can be used to store quantum information. Such spin-photon interfaces are thought to be essential for connecting distant quantum memories, which could open the door to quantum computers and long-distance cryptographic systems. Crucially, the team demonstrated a spin-coherence time (how long the memory encoded in the electron spin state lasts) of more than 200 microseconds—a long time in the context of the rate at which computational operations take place. A long coherence time is essential for quantum computing systems and long-range cryptographic networks. "Our research demonstrates a technique to extend the storage time of quantum memories in solids that are efficiently coupled to photons, which is essential to scaling up such quantum memories for functional quantum computing systems and networks," said MIT's Dirk Englund, who led the research, now published in ("On-chip detection of non-classical light by scalable integration of single-photon detectors"). Scientists at the Center for Functional Nanomaterials (CFN), a DOE Office of Science User Facility at Brookhaven Lab, helped to fabricate and characterize the materials. one-dimensional diamond crystal cavities A scanning electron micrograph of one of the one-dimensional diamond crystal cavities. (Image: MIT) Impurities trapped in diamond The memory elements described in this research are the spin states of electrons in nitrogen-vacancy (NV) centers in diamond. The NV consists of a nitrogen atom in the place of a carbon atom, adjacent to a crystal vacancy inside the carbon lattice of diamond. The up or down orientation of the electron spins on these NV centers can be used to encode information in a way that is somewhat analogous to how the charge of many electrons is used to encode the "0"s and "1"s in a classical computer. The scientists preferentially orient the NV's spin, whose direction is naturally randomly oriented, along a particular direction. This step prepares a quantum state of "0". From there, scientists can manipulate the electron spins into "1" or back into "0" using microwaves. The "0" state has brighter fluorescence than the "1" state, allowing scientists to measure the state in an optical microscope. The trick is getting the electron spins in the NV centers to hold onto the stable spin states long enough to perform these logic-gate operations—and being able to transfer information among the individual memory elements to create actual computing networks. "It is already possible to transfer information about the electron spin state via photons, but we have to make the interface between the photons and electrons more efficient. The trouble is that photons and electrons normally interact only very weakly. To increase the interaction between photons and the NV, we build an optical cavity—a trap for photons—around the NV," Englund said. Diamond photonic crystal cavities Building quantum memories on a chip: Diamond photonic crystal cavities (ladder-like structures) are integrated on a silicon substrate. Green laser light (green arrow) excites electrons on impurity atoms trapped within the cavities, picking up information about their spin states, which can then be read out as red light (red arrow) emitted by photoluminescence from the cavity. The inset shows the nitrogen-vacancy (NV)-nanocavity system, where a nitrogen atom (N) is substituted into the diamond crystal lattice in place of a carbon atom (gray balls) adjacent to a vacancy (V). Layers of diamond and air keep light trapped within these cavities long enough to interact with the nitrogen atom's spin state and transfer that information via the emitted light. (Image: MIT) Light and mirrors These cavities, nanofabricated at Brookhaven by MIT graduate student Luozhou Li with the help of staff scientist Ming Lu of the CFN, consist of layers of diamond and air tightly spaced around the impurity atom of an NV center. At each interface between the layers there's a little bit of reflection—like the reflections from a glass surface. With each layer, the reflections add up—like the reflections in a funhouse filled with mirrors. Photons that enter these nanoscale funhouses bounce back and forth up to 10,000 times, greatly enhancing their chance of interacting with the electrons in the NV center. This increases the efficiency of information transfer between photons and the NV center's electron spin state. The devices' performance was characterized in part using optical microscopy in a magnetic field at the CFN, performed by CFN staff scientist Mircea Cotlet, Luozhou Li, and Edward Chen, who is also a graduate student studying under the guidance of Englund at MIT. "Coupling the NV centers with these optical resonator cavities seemed to preserve the NV spin coherence time—the duration of the memory," Cotlet said. Added Englund: "These methods have given us a great starting point for translating information between the spin states of the electrons among multiple NV centers. These results are an important part of validating the scientific promise of NV-cavity systems for quantum networking." In addition, said Li, "The transferred hard mask lithography technique that we have developed in this work would benefit most unconventional substrates that aren't suitable for typical high-resolution patterning by electron beam lithography. In our case, we overcame the problem that hundred-nanometer-thick diamond membranes are too small and too uneven. " The methods may also enable the long-distance transfer of quantum-encoded information over fiber optic cables. Such information could be made completely secure, Englund said, because any attempt to intercept or measure the transferred information would alter the photons' properties, thus alerting the sender and the recipient to the possible presence of an eavesdropper.
read more "Nanoscale mirrored cavities amplify, connect quantum memories"

Building a graphene-based future for Europe

Graphene is the strongest, most impermeable and conductive material known to man. Graphene sheets are just one atom thick, but 200 times stronger than steel. The European Union is investing heavily in the exploitation of graphene's unique properties through a number of research initiatives such as the SEMANTICS project running at Trinity College Dublin. It is no surprise that graphene, a substance with better electrical and thermal conductivity, mechanical strength and optical purity than any other, is being heralded as the ‘wonder material’ of the 21stcentury, as plastics were in the 20th century. Graphene could be used to create ultra-fast electronic transistors, foldable computer displays and light-emitting diodes. It could increase and improve the efficiency of batteries and solar cells, help strengthen aircraft wings and even revolutionise tissue engineering and drug delivery in the health sector. It is this huge potential which has convinced the European Commission to commit €1 billion to the Future and Emerging Technologies (FET) Graphene Flagship project, the largest-ever research initiative funded in the history of the EU. It has a guaranteed €54 million in funding for the first two years with much more expected over the next decade. Sustained funding for the full duration of the Graphene Flagship project comes from the EU's Research Framework Programmes, principally from Horizon 2020 (2014-2020). The aim of the Graphene Flagship project, likened in scale to NASA’s mission to put a man on the moon in the 1960s, or the Human Genome project in the 1990s, is to take graphene and related two-dimensional materials such as silicene (a single layer of silicon atoms) from a state of raw potential to a point where they can revolutionise multiple industries and create economic growth and new jobs in Europe. The research effort will cover the entire value chain, from materials production to components and system integration. It will help to develop the strong position Europe already has in the field and provide an opportunity for European initiatives to lead in global efforts to fully exploit graphene’s miraculous properties. Under the EU plan, 126 academics and industry groups from 17 countries will work on 15 individual but connected projects. Feeding industry’s hunger for graphene But this is not the only support being provided by the EU for research into the phenomenal potential of graphene. The SEMANTICS research project, led by Professor Jonathan Coleman at Trinity College Dublin, is funded by the European Research Council (ERC) and has already achieved some promising results. The ERC does not assign funding to particular challenges or objectives, but selects the best scientists with the best ideas on the sole criterion of excellence. By providing complementary types of funding, both to individual scientists to work on their own ideas, and to large-scale consortia to coordinate top-down programmes, the EU is helping to progress towards a better knowledge and exploitation of graphene. “It is no overestimation to state that graphene is one of the most exciting materials of our lifetime,” Prof. Coleman says. “It has the potential to provide answers to the questions that have so far eluded us. Technology, energy and aviation companies worldwide are racing to discover the full potential of graphene. Our research will be an important element in helping to realise that potential.” With the help of European Research Council (ERC) Starting and Proof of Concept Grants, Prof. Coleman and his team are researching methods for obtaining single-atom layers of graphene and other layered compounds through exfoliation (peeling off) from the multilayers, followed by deposition on a range of surfaces to prepare films displaying specific behaviour. “We’re working towards making graphene and other single-atom layers available on an economically viable industrial scale, and making it cheaply,” Prof. Coleman continues. “At CRANN, we are developing nanosheets of graphene and other single-atom materials which can be made in very large quantities,” he adds. “When you put these sheets in plastic, for example, you make the plastic stronger. Not only that – you can massively increase its electrical properties, you can improve its thermal properties and you can make it less permeable to gases. The applications for industry could be endless.” Prof. Coleman admits that scientists are regularly taken aback by the potential of graphene. “We are continually amazed at what graphene and other single-atom layers can do,” he reveals. “Recently it has been discovered that, when added to glue, graphene can make it more adhesive. Who would have thought that? It’s becoming clear that graphene just makes things a whole lot better,” he concludes. So far, the project has developed a practical method for producing two-dimensional nanosheets in large quantities. Crucially, these nanosheets are already being used for a range of applications, including the production of reinforced plastics and metals, building super-capacitors and batteries which store energy, making cheap light detectors, and enabling ultra-sensitive position and motion sensors. As the number of application grows, increased demand for these materials is anticipated. In response, the SEMANTICS team has scaled up the production process and is now producing 2D nanosheets at a rate more than 1000 times faster than was possible just a year ago.
read more "Building a graphene-based future for Europe"

Carbon nanoballs can greatly contribute to sustainable energy supply

Researchers at Chalmers University of Technology have discovered that the insulation plastic used in high-voltage cables can withstand a 26 per cent higher voltage if nanometer-sized carbon balls are added. This could result in enormous efficiency gains in the power grids of the future, which are needed to achieve a sustainable energy system. The renewable energy sources of tomorrow will often be found far away from the end user. Wind turbines, for example, are most effective when placed out at sea. Solar energy will have the greatest impact on the European energy system if focus is on transport of solar power from North Africa and Southern Europe to Northern Europe. "Reducing energy losses during electric power transmission is one of the most important factors for the energy systems of the future," says Chalmers researcher Christian Müller. "The other two are development of renewable energy sources and technologies for energy storage." Together with colleagues from Chalmers University of Technology and the company Borealis in Sweden, he has found a powerful method for reducing energy losses in alternating current cables. The results were recently published in ("A New Application Area for Fullerenes: Voltage Stabilizers for Power Cable Insulation"). The researchers have shown that different variants of the C60 carbon ball, a nanomaterial in the fullerene molecular group, provide strong protection against breakdown of the insulation plastic used in high-voltage cables. Today the voltage in the cables has to be limited to prevent the insulation layer from getting damaged. The higher the voltage the more electrons can leak out into the insulation material, a process which leads to breakdown. It is sufficient to add very small amounts of fullerene to the insulation plastic for it to withstand a voltage that is 26 per cent higher, without the material breaking down, than the voltage that plastic without the additive can withstand. "Being able to increase the voltage to this extent would result in enormous efficiency gains in power transmission all over the world," says Christian Müller. "A major issue in the industry is how transmission efficiency can be improved without making the power cables thicker, since they are already very heavy and difficult to handle." Using additives to protect the insulation plastic has been a known concept since the 1970s, but until now it has been unknown exactly what and how much to add. Consequently, additives are currently not used at all for the purpose, and the insulation material is manufactured with the highest possible degree of chemical purity. In recent years, other researchers have experimented with fullerenes in the electrically conductive parts of high-voltage cables. Until now, though, it has been unknown that the substance can be beneficial for the insulation material. The Chalmers researchers have now demonstrated that fullerenes are the best voltage stabilizers identified for insulation plastic thus far. This means they have a hitherto unsurpassed ability to capture electrons and thus protect other molecules from being destroyed by the electrons. To arrive at these findings, the researchers tested a number of molecules that are also used within organic solar cell research at Chalmers. The molecules were tested using several different methods, and were added to pieces of insulation plastic used for high-voltage cables. The pieces of plastic were then subjected to an increasing electric field until they crackled. Fullerenes turned out to be the type of additive that most effectively protects the insulation plastic. The next step involves testing the method on a large scale in complete high-voltage cables for alternating current. The researchers will also test the method in high-voltage cables for direct current, since direct current is more efficient than alternating current for power transmission over very long distances. Facts: Carbon ball C60 The C60 carbon ball is also called buckminsterfullerene. It consists of 60 carbon atoms that are placed so that the molecule resembles a nanometer-sized football. C60 is included in the fullerene molecular class. Fullerenes were discovered in 1985, which resulted in the Nobel Prize in Chemistry in 1996. They have unique electronic qualities and have been regarded as very promising material for several applications. Thus far, however, there have been few industrial usage areas. Fullerenes are one of the five forms of pure carbon that exist. The other four are graphite, graphene/carbon nanotubes, diamond and amorphous carbon, for example soot. Facts: Higher voltage results in more efficient electric power transmission If small amounts of fullerene are added to high-voltage cable insulation plastic, voltage can be increased by up to 26 per cent. This means the transmitted power also increases by up to 26 per cent, since the power = voltage multiplied by current. Energy loss in the form of heat, however, does not increase if the current is kept constant since heat losses primarily depend on current. Power transmission can thereby be increased by up to 26 per cent, at the same time that energy loss stays at the same level – an efficiency increase in electric power transmission. Facts about the research The research has been conducted by eight researchers at Chalmers University of Technology in Sweden, at the Department of Chemistry and Chemical Engineering and the Department of Materials and Manufacturing Technology, as well as a researcher at Borealis AB in Stenungsund, Sweden. Chalmers’ Areas of Advance Materials Science and Energy have been responsible for funding, as has Borealis AB.
read more "Carbon nanoballs can greatly contribute to sustainable energy supply"

'Bulletproof' battery: Kevlar membrane for safer, thinner lithium rechargeables

New battery technology from the University of Michigan should be able to prevent the kind of fires that grounded Boeing 787 Dreamliners in 2013. The innovation is an advanced barrier between the electrodes in a lithium-ion battery. Made with nanofibers extracted from Kevlar, the tough material in bulletproof vests, the barrier stifles the growth of metal tendrils that can become unwanted pathways for electrical current. A U-M team of researchers also founded Ann Arbor-based Elegus Technologies to bring this research from the lab to market. Mass production is expected to begin in the fourth quarter 2016. "Unlike other ultra strong materials such as carbon nanotubes, Kevlar is an insulator," said Nicholas Kotov, the Joseph B. and Florence V. Cejka Professor of Engineering. "This property is perfect for separators that need to prevent shorting between two electrodes." Lithium-ion batteries work by shuttling lithium ions from one electrode to the other. This creates a charge imbalance, and since electrons can't go through the membrane between the electrodes, they go through a circuit instead and do something useful on the way. But if the holes in the membrane are too big, the lithium atoms can build themselves into fern-like structures, called dendrites, which eventually poke through the membrane. If they reach the other electrode, the electrons have a path within the battery, shorting out the circuit. This is how the battery fires on the Boeing 787 are thought to have started. "The fern shape is particularly difficult to stop because of its nanoscale tip," said Siu On Tung, a graduate student in Kotov's lab, as well as chief technology officer at Elegus. "It was very important that the fibers formed smaller pores than the tip size." While the widths of pores in other membranes are a few hundred nanometers, or a few hundred-thousandths of a centimeter, the pores in the membrane developed at U-M are 15-to-20 nanometers across. They are large enough to let individual lithium ions pass, but small enough to block the 20-to-50-nanometer tips of the fern-structures. The researchers made the membrane by layering the fibers on top of each other in thin sheets. This method keeps the chain-like molecules in the plastic stretched out, which is important for good lithium-ion conductivity between the electrodes, Tung said. "The special feature of this material is we can make it very thin, so we can get more energy into the same battery cell size, or we can shrink the cell size," said Dan VanderLey, an engineer who helped found Elegus through U-M's Master of Entrepreneurship program. "We've seen a lot of interest from people looking to make thinner products." Thirty companies have requested samples of the material. Kevlar's heat resistance could also lead to safer batteries as the membrane stands a better chance of surviving a fire than most membranes currently in use. While the team is satisfied with the membrane's ability to block the lithium dendrites, they are currently looking for ways to improve the flow of loose lithium ions so that batteries can charge and release their energy more quickly. The study, "A dendrite-suppressing solid ion conductor from aramid nanofibers," will appear online Jan. 27 in .
read more "'Bulletproof' battery: Kevlar membrane for safer, thinner lithium rechargeables"

Peptide nanoparticle delivery of oligonucleotide drugs into cells

Therapeutic oligonucleotide analogs represent a new and promising family of drugs that act on nucleic acid targets such as RNA or DNA; however, their effectiveness has been limited due to difficulty crossing the cell membrane. A new delivery approach based on cell-penetrating peptide nanoparticles can efficiently transport charge-neutral oligonucleotide analogs into cells, as reported in . The article is available free on the website. In the article, "Peptide Nanoparticle Delivery of Charge-Neutral Splice-Switching Morpholino Oligonucleotides", Peter Järver and coauthors, Cambridge Biomedical Campus (U.K.), Karolinska University Hospital (Huddinge, Sweden), Stockholm University (Sweden), Alexandria University (Egypt), and University of Oxford (U.K.), note that while delivery systems exist to facilitate cell entry of negatively charged oligonucleotide drugs, these approaches are not effective for charge-neutral oligonucleotide analogs. The authors describe lipid-functionalized peptides that form a complex with charge-neutral morpholino oligonucleotides, enabling them to cross into cells and retain their biological activity. "The exploitation of phosphorodiamidate morpholinos represents an exciting approach to treating a number of therapeutic targets," says Executive Editor Graham C. Parker, PhD, The Carman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Children's Hospital of Michigan, Detroit, MI. "This paper suggests an intriguing but practical approach to solving the lack of a convenient non-covalent delivery system."
read more "Peptide nanoparticle delivery of oligonucleotide drugs into cells"

Detecting cancer at the atomic level

As a young physicist in the former Soviet Union, Igor Sokolov studied the biggest of the big—the entire universe. Now, as a professor of mechanical engineering at Tufts, he’s focused on the tiny, the nano. By zooming in—way, way in—Sokolov and his colleagues study everything from bacteria to beetles down to the nanoscale level. Now he’s turned a fresh eye on one of medicine’s oldest problems: cancer. Igor Sokolov In a series of experiments over the last five years, Igor Sokolov used an atomic force microscope like the one at left to look for physical differences between cancer cells and healthy cells. Sokolov’s instrument of choice is the atomic force microscope (AFM), which uses its minuscule finger-like probe to measure tiny forces at a very small scale, “pretty much between individual atoms,” he says. He first came across this technology as a graduate student studying the origins of the universe more than 20 years ago, about the time the AFM was invented. He used it to look for evidence of theoretical elementary particles. When Sokolov didn’t find any, his work helped put those ideas to bed. Soon Sokolov turned the instrument toward more earthly concerns. By 1994, as a member of the microbiology department at the University of Toronto, he was among the first to use AFM to study bacteria. Zooming in on a probiotic bacterium used to make Swiss cheese, Sokolov revealed a never-before-documented process by which the cell repairs its surface after sustaining chemical damage. The experiment also demonstrated AFM’s ability to detect mechanical changes in living cells at unprecedented resolution—something that would be useful in Sokolov’s later work. “That was the beginning of my love of biomedical applications,” says Sokolov, who also has appointments in the departments of biomedical engineering and physics. Closer Look at Cancer More recently, Sokolov and his colleagues have used atomic force microscopy on some of the most mysterious cells of all—malignant ones. Most existing diagnostic tools use the cells’ chemical footprint to identify cancer. In a series of experiments over the last five years, he looked for physical differences between cancer cells and healthy cells that could help physicians diagnose cancer earlier and more accurately. Early detection substantially increases patients’ chances of survival. He and his collaborators have had some promising results in preliminary studies using cervical and bladder cancer cells—“cancers where you can harvest cells without biopsies—very un-invasive methods,” he points out. In 2009, Sokolov and his colleagues at Clarkson University in New York studied healthy and diseased cells that were virtually identical, biochemically speaking. Searching for some physical or mechanical difference that could help distinguish the two types of cells, the researchers found that the surface coat surrounding cancer cells—what Sokolov calls the pericellular brush layer—was markedly different from that of the normal ones. “That was definitely new,” he says, noting that similar results were recently published by researchers using more traditional biochemical methods. “The authors called those findings the result of the change of paradigm of looking at cancer.” The pericellular brush layer is something like a cell’s fur coat, and it can resemble that of a Persian cat or that of a mangy mutt. It’s in the density and size of this brush layer that the researchers found significant differences between cancer cells and healthy cells. In a 2009 paper published in , the team reported observing a relatively uniform brush layer in healthy cells, while in cancerous cells, they saw a two-tiered brush layer, with sparse long hairs and dense short bristles. When the scientists dusted cell cultures with fluorescent particles, they could see—even with the naked eye—that the particles had stuck to the cancerous cells, leaving glowing evidence of the disease. “You don’t need any device to see the difference. It created a very strong visible gradient for cancer cells,” Sokolov says. That fact turned out to be more interesting than useful as a diagnostic tool, though. That’s because the suspect cells have to be cultured in a dish—and scientists can already identify cancerous cells simply by watching them grow. The Fractal Time Bomb So Sokolov’s team searched for other parameters that might alert pathologists to the presence of cancer. After testing many cellular characteristics, the researchers found one key variation, a trait called “fractal dimensionality.” Fractals are defined as “self-similar” patterns that look about the same at various scales. They occur often in nature. Think of a tree: the thinnest leaf-bearing twigs repeat the patterns of the broader branches below. They look about the same as you zoom in or out; you lose your sense of scale without another object to tip you off. “Fractals typically occur in nature from chaotic behavior. Cancer has been associated with chaos as well. Therefore, many researchers predicted connection between cancer and fractals,” Sokolov explains. And when his team used AFM to look at the surface of cells, the researchers saw virtually a 100 percent difference in the fractal dimensionality of normal and cancer cells, a finding they reported in the journal in 2011. detail of a map of the mechanical properties of a plant cell A detail of a map of the mechanical properties of a plant cell created by Igor Sokolov using a new technique with the atomic force microscope. More recently, Sokolov and his colleagues were able to determine that this fractal geometry occurs during a specific, intermediary phase of cancer progression. The results—recently submitted for publication—might one day help doctors not just diagnose the disease but also monitor its progression. “So far what we have seen is pretty precise, way more precise that anything that is available to doctors to diagnose cervical cancer today,” says Sokolov. He notes that the common Pap smear test is prone to turning up false positives and missing early cancers. Though the test has brought mortality rates down since its introduction, it has never been the subject of a randomized controlled trial—the gold standard of scientific research—and there are no universally accepted definitions of the test results, according to the National Cancer Institute. “It still has insufficient accuracy, leading to costly and unpleasant unnecessary biopsies,” says Sokolov. The cancer research is just one of several projects Sokolov and his two postdoctoral fellows together with four graduate students—two mechanical engineers and two biomedical engineers—have underway in their labs at 200 Boston Avenue. The group, with collaborators from Tufts Medical Center, Dartmouth College and institutions all over Boston, is also looking for other nanotech approaches to diagnosing cancer. They’ve already developed a high-resolution, high-speed test that could eventually lead to a new way to study changes in cells when they become malignant. Thinking more long-range, Sokolov floats the idea of a nanoparticle patrolling the body that can change color when it detects something bad. “Like a time bomb, some of these cells will turn cancerous,” he says. “At early stages, cancer is pretty easily killed, so early diagnosis may help eradicate it.”
read more "Detecting cancer at the atomic level"

Chromium-centered cycloparaphenylene rings for making functionalized nanocarbons

Professor Kenichiro Itami, Yasutomo Segawa and Natsumi Kubota of the JST-ERATO Itami Molecular Nanocarbon Project and the Institute of Transformative Bio-Molecules (ITbM), Nagoya University have synthesized novel cycloparaphenylene (CPP) chromium complexes and demonstrated their utility in obtaining monofunctionalized CPPs, which could become useful precursors for making carbon nanotubes with unprecedented structures. CPPs consist of a chain of benzene rings and are the shortest segment of carbon nanotubes. Since their first synthesis and isolation in 2008, CPPs have attracted wide attention in the fields of materials science and supramolecular chemistry. Applying the basic concepts of chromium arene chemistry, Itami and his coworkers have performed the first selective installation of a functional group on CPP, which has previously been difficult due to multiple reactive arene sites on the CPP ring. By being able to selectively install and tune the functional groups on CPPs, it is envisaged that carbon nanotubes with new properties can be constructed by this method. The study, published online on January 12, 2015 in the ("η6-Cycloparaphenylene Transition Metal Complexes: Synthesis, Structure, Photophysical Properties, and Application to the Selective Monofunctionalization of Cycloparaphenylenes"), illustrates the first synthesis, isolation and analysis of a CPP chromium complex, which enables a one-pot access to monofunctionalized CPPs. This outcome is believed to be a significant advance in the fields of both CPP chemistry and organometallic chemistry. One-Pot Selective Monofunctionalization of CPP Via a Chromium Complex This image shows a one-pot selective monofunctionalization of CPP via a chromium complex. (Image: ITbM, Nagoya University) Arenes are known to coordinate to transition metals and the corresponding metal complexes exhibit different reactivities relative to the free arene. CPPs, which consist of a chain of arenes, also reacted with chromium carbonyl to successfully generate the first chromium complex of CPP. Interestingly, the main product was a CPP with one chromium moiety complexed to one arene on the outer side of the ring, as confirmed by 1H NMR (nuclear magnetic resonance) spectroscopy, high-resolution mass spectrometry and X-ray crystallography. "Chromium arene chemistry is a well-established area and we decided to apply this organometallic method to synthesize the first CPP chromium complex," says Itami, the Director of the JST-ERATO project and the Institute of Transformative Bio-Molecules. "As CPPs have a number of arene rings, we initially expected that chromium would form a complex with each arene ring," says Segawa, a group leader of the JST-ERATO project. "However, we were surprised to see that CPP reacted with chromium in a 1:1 ratio in all the conditions that we tried. Simulation of the molecular structure suggested that the first equivalent of chromium complexed to CPP lowers its reactivity, thus preventing the reaction with a second chromium moiety." Upon finding that a monometallic CPP complex could be obtained, Itami's team explored the possibility of obtaining monofunctionalized CPPs from this complex. Itami and Segawa describe the steps in achieving this. "This was not an easy task as chromium arene complexes are usually air and light sensitive, and CPP chromium complexes were no exception. But Natsumi worked persistently to obtain a pure crystal of the first CPP chromium complex," says Itami. "We then performed the subsequent reactions in one-pot, to synthesize monofunctionalized CPPs after addition of base/electrophiles and removal of the metal from the CPP chromium complex," says Segawa. Selective monofunctionalizations of CPPs i.e. installation of one functional group at a single position on the arene ring, are difficult to achieve as all carbon-hydrogen bonds on the arene rings are chemically equivalent. Direct functionalization of metal-free CPPs usually leads to multiple substitutions on the arene rings in an uncontrolled manner. Despite CPPs being desirable components for carbon nanotubes, there has been no efficient method to obtain directly functionalized CPPs up to now. "We were pleased to see that a functional group could be selectively installed on one arene ring via chromium coordination of CPPs," says Segawa. "As electrophiles, we utilized silyl, boryl and ester groups, which act as handles that can be easily transformed to other useful functionalities," he continues. Itami says, "We hope that this new approach evolves to become a valuable method to construct carbon nanotubes with unique structures and properties."
read more "Chromium-centered cycloparaphenylene rings for making functionalized nanocarbons"

Graphene enables electrical control of energy flow from light emitters

Lasers, computer displays and similar devices emit photons, and modulation of these light particles is critical in optoelectronic applications. Moreover, electrical control of light emission pathways makes possible devices based on active plasmonics, in which information transfer in nanoscale structures exploits electron oscillations at the interfaces between materials. Scientists from Europe's Graphene Flagship have demonstrated active, in-situ electrical control of energy flow from erbium ions into photons and surface plasmons. In the experiment, erbium emitters are placed a few tens of nanometres away from a graphene sheet, the charge carrier density of which is electrically controlled. Results from the study led by researchers at the Institute of Photonic Sciences (ICFO) in Barcelona, and the Donostia-based graphene manufacturer Graphenea, have been published in the journal ("Electrical control of optical emitter relaxation pathways enabled by graphene"). controlled energy flow from electrons into photons and plasmons Illustration of controlled energy flow from electrons into photons and plasmons. (Image: ICFO) Erbium ions are commonly used in optical amplifiers, emitting light at the near-infrared wavelength of 1.5 microns. This wavelength is in an important band for optical telecommunications, as there is very little energy loss in the range, and thus an efficient transmission of information. In the paper, the first author of which is Klaas-Jan Tielrooij, the researchers show that energy flow from erbium into photons or plasmons can be controlled by applying a small voltage between the erbium and graphene layers. Surface plasmons in graphene are very strongly confined, with a plasmon wavelength two orders of magnitude smaller than the wavelength of emitted photons. As the charge carrier density of the graphene sheet is gradually increased, the erbium ions shift from exciting electrons in the graphene sheet to emitting photons or plasmons. These experiments reveal long-sought-after graphene plasmons at the near-infrared frequencies used in telecommunications applications. In addition, the strong concentration of optical energy observed offers new possibilities for data storage and manipulation through active plasmonic networks. ICFO quantum nano-optoelectronics group leader and study co-author Frank Koppens says: "This work shows that electrical control of light at the nanometer scale is possible and efficient, thanks to the optoelectronics properties of graphene." Commenting on the role of the Graphene Flagship, Koppens adds: "The Graphene Flagship is an excellent platform for collaborative efforts on complex projects. It fosters the exchange of ideas, materials and devices, and at the same provides a path forward for the realisation of practical applications."
read more "Graphene enables electrical control of energy flow from light emitters"

Nanotechnology changes behavior of materials used in solar cells

One of the reasons solar cells are not used more widely is cost — the materials used to make them most efficient are expensive. Engineers are exploring ways to print solar cells from inks, but the devices don’t work as well. Elijah Thimsen, PhD, assistant professor of energy, environmental & chemical engineering in the School of Engineering & Applied Science at Washington University in St. Louis, and a team of engineers at the University of Minnesota have developed a technique to increase the performance and electrical conductivity of thin films that make up these materials using nanotechnology. Their work was published in the Dec. 19, 2014, issue of ("High electron mobility in thin films formed via supersonic impact deposition of nanocrystals synthesized in nonthermal plasmas"). Transparent conductors are thin films, which are are simply ultrathin layers of materials deposited on a surface that allow light to pass through and conduct electricity, a process in which electrons flow through a system. Thimsen and his team found by changing the structure of a thin film made of zinc oxide nanoparticles, electrons no longer flowed through the system in a conventional way, but hopped from place to place by a process called tunneling. The team measured the electronic properties of a thin film made of zinc oxide nanoparticles before and after coating its surface with aluminum oxide. Both the zinc oxide nanoparticles and aluminum oxide are electronic insulators, so only a tiny amount of electricity flows through them. However, when these insulators were combined, the researchers got a surprising result. “The new composite became highly conductive,” Thimsen said. “The composite exhibits fundamentally different behavior than the parent compounds. We found that by controlling the structure of the material, you can control the mechanism by which electrons are transported.” Because the reason behind this is not well understood, Thimsen and the team plan to continue to work to understand the relationship between the structure of the nanoparticle film and the electron transport mechanism, he said. “If electrons are tunneling, they’re not really moving with a classical velocity and moving from one point to the next,” Thimsen said. “If electrons are tunneling from one point to the next, one hypothesis is that they won’t interact with strong magnetic fields. One of our long-term visions is to create a material that has high electrical conductivity but does not interact with magnetic fields.” In addition, the new composite’s behavior also improved its performance, which could ultimately help to lower the cost of materials used in solar cells and other electronic devices. “The performance is quite good, but not at the level it needs to be to be commercially viable, but it’s close,” Thimsen said.
read more "Nanotechnology changes behavior of materials used in solar cells"

New technique helps probe performance of organic solar cell materials

A research team led by North Carolina State University has developed a new technique for determining the role that a material’s structure has on the efficiency of organic solar cells, which are candidates for low-cost, next generation solar power. The researchers have used the technique to determine that materials with a highly organized structure at the nanoscale are not more efficient at creating free electrons than poorly organized structures – a finding which will help guide future research and development efforts. “There have been a lot of studies looking at the efficiency of organic solar cells, but the energy conversion process involves multiple steps – and it’s difficult to isolate the efficiency of each step,” says Dr. Brendan O’Connor, an assistant professor of mechanical engineering at NC State and senior author of a paper ("In-Plane Alignment in Organic Solar Cells to Probe the Morphological Dependence of Charge Recombination") on the work. “The technique we discuss in our new paper allows us to untangle those variables and focus on one specific step – exciton dissociation efficiency.” probing organic solar cells Broadly speaking, organic solar cells convert light into electric current in four steps. First, the cell absorbs sunlight, which excites electrons in the active layer of the cell. Each excited electron leaves behind a hole in the active layer. The electron and hole is collectively called an exciton. In the second step, called diffusion, the exciton hops around until it encounters an interface with another organic material in the active layer. When the exciton meets this interface, you get step three: dissociation. During dissociation, the exciton breaks apart, freeing the electron and respective hole. In step four, called charge collection, the free electron makes its way through the active layer to a point where it can be harvested. In previous organic solar cell research, there was ambiguity about whether differences in efficiency were due to dissociation or charge collection – because there was no clear method for distinguishing between the two. Was a material inefficient at dissociating excitons into free electrons? Or was the material just making it hard for free electrons to find their way out? To address these questions, the researchers developed a method that takes advantage of a particular characteristic of light: if light is polarized so that it “runs” parallel to the long axis of organic solar cell molecules, it will be absorbed; but if the light runs perpendicular to the molecules, it passes right through it. The researchers created highly organized nanostructures within a portion of the active layer of an organic solar cell, meaning that the molecules in that portion all ran the same way. They left the remaining regions of the cell disorganized, meaning the molecules ran in a bunch of different directions. This design allowed the researchers to make the organized areas of the cell effectively invisible by controlling the polarity of light aimed at the active layer. In other words, the researchers could test just the organized section or just the disorganized section – even though they were on the same active layer of the same solar cell. Because the charge collection would be the same for both regions (since they were on the same active layer), the technique allowed the researchers to measure the degree to which structural organization affected the material’s dissociation efficiency. “We found that there was no relationship between dissociation efficiency and structural organization,” O’Connor says. “It was really a surprise, and it tells us that we don’t need highly ordered nanostructures for efficient free electron generation. “In practical terms, this technique will help distinguish efficiency losses of newly developed materials, helping define which material and nanostructure features are needed to advance organic solar cell technology.”
read more "New technique helps probe performance of organic solar cell materials"

Scientists 'bend' elastic waves with new metamaterials that could have commercial applications

Sound waves passing through the air, objects that break a body of water and cause ripples, or shockwaves from earthquakes all are considered "elastic" waves. These waves travel at the surface or through a material without causing any permanent changes to the substance's makeup. Now, engineering researchers at the University of Missouri have developed a material that has the ability to control these waves, creating possible medical, military and commercial applications with the potential to greatly benefit society (, "Negative refraction of elastic waves at the deep-subwavelength scale in a single-phase metamaterial"). chiral microstructures on a steel sheet The fabrications were made in a steel sheet with lasers and are chiral microstructures, which means the top and bottom layers are identical in composition but arranged asymmetrically. It’s the first such material to be made out of a single medium. (Image: Guoliang Huang) "Methods of controlling and manipulating subwavelength acoustic and elastic waves have proven elusive and difficult; however, the potential applications--once the methods are refined--are tremendous," said Guoliang Huang, associate professor of mechanical and aerospace engineering in the College of Engineering at MU. "Our team has developed a material that, if used in the manufacture of new devices, could have the ability to sense sound and elastic waves. By manipulating these waves to our advantage, we would have the ability to create materials that could greatly benefit society--from imaging to military enhancements such as elastic cloaking--the possibilities truly are endless." In the past, scientists have used a combination of materials such as metal and rubber to effectively 'bend' and control waves. Huang and his team designed a material using a single component: steel. The engineered structural material possesses the ability to control the increase of acoustical or elastic waves. Improvements to broadband signals and super-imaging devices also are possibilities. The material was made in a single steel sheet using lasers to engrave "chiral," or geometric microstructure patterns, which are asymmetrical to their mirror images (see photo). It's the first such material to be made out of a single medium. Huang and his team intend to introduce elements they can control that will prove its usefulness in many fields and applications. "In its current state, the metal is a passive material, meaning we need to introduce other elements that will help us control the elastic waves we send to it," Huang said. "We're going to make this material much more active by integrating smart materials like microchips that are controllable. This will give us the ability to effectively 'tune in' to any elastic sound or elastic wave frequency and generate the responses we'd like; this manipulation gives us the means to control how it reacts to what's surrounding it." Going forward, Huang said there are numerous possibilities for the material to control elastic waves including super-resolution sensors, acoustic and medical hearing devices, as well as a "superlens" that could significantly advance super-imaging, all thanks to the ability to more directly focus the elastic waves.
read more "Scientists 'bend' elastic waves with new metamaterials that could have commercial applications"

Graphene-boron nitride heterostructures propagate light at the nanoscale

International research undertaken by scientists from ICFO and CIC nanoGUNE, amongst other centres, has enabled compressing light into small devices and controlling their flow of electricity, thanks to the union of graphene and boron nitride (a good bidimensional insulator). Such a promising heterostructure has been made possible through taking advantage of what are known as plasmons: quasiparticles in which electrons and light move together as a coherent wave. The plasmons, guided by the graphene, can be limited to nanometric wave scales, up to 200 times smaller than the wavelength of light. An important obstacle to date, however, has been the rapid loss of energy that these plasmons undergo, thus limiting the range within which they can travel. This problem has been solved thanks to the union between graphene and boron nitride. The combination of these two unique bidimensional materials has provided the solution to controlling light in small devices, as well as obviating energy losses. When the graphene is encapsulated within boron nitride, the electrons can travel, ballistically, large distances without dispersion, including at ambient temperature. This research (, "Highly confined low-loss plasmons in graphene–boron nitride heterostructures") shows that the graphene/boron material nitride system is also an excellent host to extremely strongly confined light as well as to suppressing loss of plasmons. The research was carried out by researchers from ICFO (Barcelona), nanoGUNE and CNR/Scuola Normale Superiore (Pisa) — all members of the EU Graphene Flagship, and the US universities of Columbia and Missouri. According to Ikerbasque researcher Rainer Hillenbrand, Nano-optics team leader at nanoGUNE, “we are now able to compress light and, at the same time, propagate it for considerable distances by employing nanomaterials. In the future, thanks to the fact that plasmon loss is insignificant, much faster signal processing and information processing can be achieved, with greater optical sensitivity”. According to the authors of the research, this is only the beginning of a series of discoveries about the nano-optoelectronic properties of this new heterostructure, previously discovered at the University of Columbia. These discoveries open the path to extremely miniaturised optical circuits and devices which can be useful for biological detection, information processing and data communication.
read more "Graphene-boron nitride heterostructures propagate light at the nanoscale"

Stable long term operation of graphene devices achieved

Graphene based devices have shown outstanding electrical and optical performances. However, the properties of graphene devices are extremely sensitive to environmental factors, such as humidity or gas composition, making a reproducible operation in normal atmosphere impossible so far. Researchers from AMO GmbH and Graphenea SE have now demonstrated a sophisticated encapsulation technique enabling highly reproducible operation of graphene devices in normal atmosphere for several months. Stable long term operation of graphene devices Generally, adsorbates from the ambient (such as moisture or oxygen) and residuals from lithography processes used during device fabrication adhere to the graphene and change its doping level unintentionally. As these contaminants are unstable under normal conditions, the doping level and hence the electrical and optical properties of graphene devices also change. The variation in these parameters is a major roadblock for using graphene devices in applications. The researchers at AMO GmbH and Graphenea SE have identified this problem and investigated the encapsulation of graphene field effect devices using aluminum oxide, an encapsulation material well known for OLEDs. The key parameter for device passivation found in this study is the growth of an oxide layer using a properly in-situ oxidized aluminum seed layer. The employed passivation layer is able to persistently stabilize the device characteristics over several months when stored and measured in ambient atmosphere. This is a major step towards the use of graphene devices in real applications. The research work is published in the Royal Society of Chemistry journal ("Highly Air Stable Passivation of Graphene Based Field Effect Devices"). The work is financially supported by the European Commission under the projects GRAFOL (contract no. 285275), Flagship Graphene (contract no. 604391), and by the German Science Foundation under the project Ultragraphen (contract no. BA3788/2-1).
read more "Stable long term operation of graphene devices achieved"

Graphene nanosensor determines caffeine and other componets in tea

Researchers from University of Tehran used a simple, cost-effective and eco-friendly method to produce a sensor based on graphene nano-sheets with high sensitivity and simultaneously measure useful components of tea (, "Simultaneous determination of theophylline, theobromine and caffeine in different tea beverages by graphene-oxide based ultrasonic-assisted dispersive micro solid-phase extraction combined with HPLC-UV"). Tea is a traditional drink in many countries. Alkaloid compounds, including methylxanthine, are known as the cause of useful properties of the drink such as decreasing the risk of cancer and cardiovascular diseases, anti-oxidant, anti-inflammation and anti-overweighting. Theophylline, theobromine and caffeine existing in tea are among the type of methylxanthines that are found in almost all types of teas. The aim of the research was to produce a sensor and measure the abovementioned components to evaluate the quality of the tea. Finding a pattern for the useful components of home-made tea and comparing it with the foreign-made products is among other objectives of the research. According to Dr. Hassan Sereshti, chemical composition and the mechanism to process tea provides the required information to understand therapeutic characteristics of the tea. However, no scientific and reliable method has so far been presented to study the quality of tea. Therefore, the results of the research can be used for the production of domestically-made tea and to improve its quality. The development of the method and taking samples from tea products at various geographical areas at different times of the process result in obtaining a national standard pattern for tea. Due to the potentials of graphene oxide, this sorbent can be used as a suitable method for the measurement and separation of polar and hydrophilic molecule samples from aqueous solutions.
read more "Graphene nanosensor determines caffeine and other componets in tea"

Nano-beaker offers insight Into the condensation of atoms

An international team of physicists has succeeded in mapping the condensation of individual atoms, or rather their transition from a gaseous state to another state, using a new method. Led by the Swiss Nanoscience Institute and the Department of Physics at the University of Basel, the team was able to monitor for the first time how xenon atoms condensate in microscopic measuring beakers, or quantum wells, thereby enabling key conclusions to be drawn as to the nature of atomic bonding. The researchers published their results in the journal ("Interplay of weak interactions in the atom-by-atom condensation of xenon within quantum boxes"). three different quantum wells that contain one, two and three xenon atoms Monitoring of the condensation of xenon: Depicted in scanning tunneling microscopy are three different quantum wells that contain one, two and three xenon atoms. The team headed by Professor Thomas Jung, which consists of researchers from the Swiss Nanoscience Institute, Department of Physics at the University of Basel and the Paul Scherrer Institute, developed a method enabling the condensation of individual atoms to be mapped on a step by step basis for the first time. The researchers allowed atoms of the noble gas xenon to condensate in quantum wells and monitored the resulting accumulations using a scanning tunneling microscope. Quantum wells as beakers The autonomous organization of specifically 'programmed' molecules facilitates the creation of a porous network on a substrate surface – these are the quantum wells used as measuring beakers with a specifically defined size, shape and atomic wall and floor structure. The atoms' freedom of movement is restricted in the quantum wells, allowing the arrangement of the atoms to be closely monitored and mapped depending on the composition. With this data, the researchers were able to show that the xenon atoms always arrange themselves according to a certain principle. For example, some units consisting of four atoms are only formed when there are at least seven atoms in the quantum well. And if there are twelve atoms in the quantum well, this results in the creation of three highly stable four-atom units. Conclusions about the nature of bonding The images and structures of nano-condensates recorded for the first time allow key conclusions to be drawn as to the nature of the physical bonds formed by the xenon atoms. "But this system is not restricted exclusively to noble gases," says Sylwia Nowakowska, lead author of the publication. "We can also use it to research other atoms and the way that they bond." As the newly developed method accurately maps atomic bonding and determines the stability of the various states, it can also be used to verify theoretical calculations about bonds.
read more "Nano-beaker offers insight Into the condensation of atoms"

Self-assembled nanotextures create antireflective surface on silicon solar cells

Reducing the amount of sunlight that bounces off the surface of solar cells helps maximize the conversion of the sun's rays to electricity, so manufacturers use coatings to cut down on reflections. Now scientists at the U.S. Department of Energy's Brookhaven National Laboratory show that etching a nanoscale texture onto the silicon material itself creates an antireflective surface that works as well as state-of-the-art thin-film multilayer coatings. Their method, described in the journal and submitted for patent protection, has potential for streamlining silicon solar cell production and reducing manufacturing costs. The approach may find additional applications in reducing glare from windows, providing radar camouflage for military equipment, and increasing the brightness of light-emitting diodes. "For antireflection applications, the idea is to prevent light or radio waves from bouncing at interfaces between materials," said physicist Charles Black, who led the research at Brookhaven Lab's Center for Functional Nanomaterials (CFN), a DOE Office of Science User Facility. nanotextured square of silicon A closeup shows how the nanotextured square of silicon completely blocks reflection compared with the surrounding silicon wafer. Preventing reflections requires controlling an abrupt change in "refractive index," a property that affects how waves such as light propagate through a material. This occurs at the interface where two materials with very different refractive indices meet, for example at the interface between air and silicon. Adding a coating with an intermediate refractive index at the interface eases the transition between materials and reduces the reflection, Black explained. "The issue with using such coatings for solar cells," he said, "is that we'd prefer to fully capture every color of the light spectrum within the device, and we'd like to capture the light irrespective of the direction it comes from. But each color of light couples best with a different antireflection coating, and each coating is optimized for light coming from a particular direction. So you deal with these issues by using multiple antireflection layers. We were interested in looking for a better way." For inspiration, the scientists turned to a well-known example of an antireflective surface in nature, the eyes of common moths. The surfaces of their compound eyes have textured patterns made of many tiny "posts," each smaller than the wavelengths of light. This textured surface improves moths' nighttime vision, and also prevents the "deer in the headlights" reflecting glow that might allow predators to detect them. "We set out to recreate moth eye patterns in silicon at even smaller sizes using methods of nanotechnology," said Atikur Rahman, a postdoctoral fellow working with Black at the CFN and first author of the study. The scientists started by coating the top surface of a silicon solar cell with a polymer material called a "block copolymer," which can be made to self-organize into an ordered surface pattern with dimensions measuring only tens of nanometers. The self-assembled pattern served as a template for forming posts in the solar cell like those in the moth eye using a plasma of reactive gases—a technique commonly used in the manufacture of semiconductor electronic circuits. The resulting surface nanotexture served to gradually change the refractive index to drastically cut down on reflection of many wavelengths of light simultaneously, regardless of the direction of light impinging on the solar cell. nanotextured antireflective surface Details of the nanotextured antireflective surface as revealed by a scanning electron microscope at the Center for Functional Nanomaterials. The tiny posts, each smaller than the wavelengths of light, are reminiscent of the structure of moths' eyes, an example of an antireflective surface found in nature. "Adding these nanotextures turned the normally shiny silicon surface absolutely black," Rahman said. Solar cells textured in this way outperform those coated with a single antireflective film by about 20 percent, and bring light into the device as well as the best multi-layer-coatings used in the industry. "We are working to understand whether there are economic advantages to assembling silicon solar cells using our method, compared to other, established processes in the industry," Black said. Hidden layer explains better-than-expected performance One intriguing aspect of the study was that the scientists achieved the antireflective performance by creating nanoposts only half as tall as the required height predicted by a mathematical model describing the effect. So they called upon the expertise of colleagues at the CFN and other Brookhaven scientists to help sort out the mystery. "This is a powerful advantage of doing research at the CFN—both for us and for academic and industrial researchers coming to use our facilities," Black said. "We have all these experts around who can help you solve your problems." Using a combination of computational modeling, electron microscopy, and surface science, the team deduced that a thin layer of silicon oxide similar to what typically forms when silicon is exposed to air seemed to be having an outsized effect. "On a flat surface, this layer is so thin that its effect is minimal," explained Matt Eisaman of Brookhaven's Sustainable Energy Technologies Department and a professor at Stony Brook University. "But on the nanopatterned surface, with the thin oxide layer surrounding all sides of the nanotexture, the oxide can have a larger effect because it makes up a significant portion of the nanotextured material." Said Black, "This 'hidden' layer was the key to the extra boost in performance." The scientists are now interested in developing their self-assembly based method of nanotexture patterning for other materials, including glass and plastic, for antiglare windows and coatings for solar panels.
read more "Self-assembled nanotextures create antireflective surface on silicon solar cells"

Nanoplasmonics - making a tiny rainbow

A scheme for greatly increasing the number of colors that can be produced by arrays of tiny aluminum nanodisks has been demonstrated by A*STAR scientists ("Plasmonic Color Palettes for Photorealistic Printing with Aluminum Nanostructures"). Three strategies for producing colors of pixels containing four aluminum nanodisks Three strategies for producing colors of pixels containing four aluminum nanodisks. Row 1: varying the nanodisk diameter (d) gives 15 colors. Row 2: Varying both the spacing (s) and diameter (d) of the nanodisks gives over 300 colors. Row 3: Varying the diameters (d1 and d2) of the two pairs of diametrically opposite nanodisks gives over 100 colors. (© American Chemical Society) (Also see our Nanowerk Spotlight on this research: "Photorealistic plasmonic printing with aluminum nanostructures") Conventional pigments produce colors by selectively absorbing light of different wavelengths — for example, red ink appears red because it absorbs strongly in the blue and green spectral regions. A similar effect can be realized at a much smaller scale by using arrays of metallic nanostructures, since light of certain wavelengths excites collective oscillations of free electrons, known as plasmon resonances, in such structures. An advantage of using metal nanostructures rather than inks is that it is possible to enhance the resolution of color images by a hundred fold. This enhanced resolution, at the diffraction limit of light, is critical for data storage, digital imaging and security applications. Aluminum — because of its low cost and good stability — is a particularly attractive material to use. Joel Yang and Shawn Tan at the A*STAR Institute of Materials Research and Engineering and co-workers used an electron beam to form arrays of approximately 100-nanometer-tall pillars. They then deposited a thin aluminum layer on top of the pillars and in the gaps between them. In these arrays, each pixel was an 800-nanometer-long square containing four aluminum nanodisks. The plasmon resonance wavelength varies sensitively with the dimensions of the nanostructures. Consequently, by varying the diameter of the four aluminum nanodisks in a pixel (all four nanodisks having the same diameter), the scientists were able to produce about 15 distinct colors — a good start, but hardly enough to faithfully reproduce full-color images. By allowing two pairs of diametrically opposite nanodisks to have different diameters from each other, then varying the two diameters enabled them to increase this number to over 100. Finally, they generated over 300 colors by varying both the nanodisk diameter (but keeping all four diameters within a pixel the same) and the spacing between adjacent nanodisks in a pixel (see image). “This method is analogous to half-toning used in ink-based printing and results in a broad color gamut,” comments Yang. The researchers demonstrated the effectiveness of their extended palette using a Monet painting. They reproduced the image using both a limited and extended palette, with a much better color reproduction from the extended palette. Amazingly, they shrank the image from 80 centimeters to a mere 300 micrometers — a 2,600-fold reduction in size. “The use of a more cost-effective metal has the potential to move this technology closer to adoption,” Tan notes.
read more "Nanoplasmonics - making a tiny rainbow"