Shaping the hilly landscapes of a semi-conductor nanoworld
Plasmonic material could bring ultrafast all-optical communications
How to look for a few good catalysts
Black phosphorus could replace silicon computer chips
A cost-effective solution to tuned graphene production
Mario Hofmann is holding an example set up of the electrochemical synthesis. Today (30 July), in the journal ("Controlling the properties of graphene produced by electrochemical exfoliation"), a team of researchers report that they have developed a simple electrochemical approach which allows defects to intentionally be created in the graphene, altering its electrical and mechanical properties and making the material even more useful.
The researchers used a technique called electrochemical synthesis to break graphite flakes into graphene layers. By varying the voltage they could change the resulting graphene's thickness, flake area, and number of defects - all of which alter the properties of graphene.
"Graphene is basically a metal - so it's somewhat boring!" explains Mario Hofmann, a researcher at National Cheng Kung University in Taiwan. "But when you start adding defects you begin to get interesting effects."
First studies on the electronic properties of graphene that brought received a lot of attention and the Physics Nobel prize in 2010 used graphene that was produced using adhesive tape to remove flakes of graphene from graphite. However, its defective counterpart graphene oxide could be first to carve out a significant market share as polymer fillers and battery electrodes.
Sol-gel capacitor dielectric offers record-high energy storage
Controlling phase changes in solids
Making the new silicon
Among the other feasible applications for the transistors, Palacios says, is better power electronics for data centers run by Google, Amazon, Facebook, and other companies, to power the cloud.
Currently, these data centers eat up about 2 percent of electricity in the United States. But GaN-based power electronics, Palacios says, could save a very significant fraction of that.
Another major future application, Palacios adds, will be replacing the silicon-based power electronics in electric cars. These are in the chargers that charge the battery, and the inverters that convert the battery power to drive the electric motors. The silicon transistors used today have a constrained power capability that limits how much power the car can handle. This is one of the main reasons why there are few large electric vehicles.
GaN-based power electronics, on the other hand, could boost power output for electric cars, while making them more energy-efficient and lighter — and, therefore, cheaper and capable of driving longer distances. “Electric vehicles are popular, but still a niche product. GaN power electronics will be key to make them mainstream,” Palacios says.
Innovative ideas In launching CEI, the MIT founders turned to the Institute’s entrepreneurial programs, which contributed to the startup’s progress. “MIT's innovation and entrepreneurial ecosystem has been key to get things moving and to the point where we are now,” Palacios says. Palacios first earned a grant from the Deshpande Center for Technological Innovation to launch CEI. Afterward, he took his idea for GaN-based power electronics to Innovation Teams (i-Teams), which brings together MIT students from across disciplines to evaluate the commercial feasibility of new technologies. That program, he says, showed him the huge market pull for GaN power electronics, and helped CEI settle on its first products. “Many times, it’s the other way around: You come out with an amazing technology looking for an application. In this case, thanks to i-Teams, we found there were many applications looking for this technology,” Palacios says. For Lu, a key element for growing CEI was auditing Start6, a workshop hosted by the Department of Electrical Engineering and Computer Science, where entrepreneurial engineering students are guided through the startup process with group discussions and talks from seasoned entrepreneurs. Among other things, Lu gained perspective on dividing equity, funding, building a team, and other early startup challenges. “It’s a great class for a student who has an idea, but doesn’t know exactly what’s going on in business,” Lu says. “It’s kind of an overview of what the process is going to be like, so when you start your own company you are ready.”Graphene supercurrents go ballistic
Spins in graphene with a hedgehog texture
Asymmetric optical-invisibility camouflage
Reshaping the solar spectrum to turn light to electricity
Wafer-thin material heralds future of wearable technology
Superconducting qubit and magnetic sphere hybrid
Superfast fluorescence sets new speed record
The future with nanoionics
Graphene - from science fundamentals to low-cost production
Relevant applications include imaging of topological currents at domain boundaries in bilayer graphene, and induced superconductivity in the quantum spin Hall regime.
Graphene is a two-dimensional polymer, noted Klaus Müllen of the Max-Planck Institute in Mainz, and this makes it something of a challenge for materials synthesis. Müllen looked at both bottom-up and top-down production protocols, including the flattening of 3d, propeller-like molecules. The most promising approach to graphene synthesis is electrochemical exfoliation.
Applications of electrochemically exfoliated graphene identified by Müllen include organic photodetectors and transparent conductive electrodes, with the ability to produce ultrathin and flexible devices. Energy storage is another possibility, using exfoliated graphene and colloidal nanoparticles. Such nanoparticles, wrapped in graphene, offer high reversible charge capacity, retention and Coulomb efficiency.
Müllen concluded his talk with some 3d simulations of carbon networks, and noted, with the illustration of a beehive, that nature sometimes makes mistakes.
Manish Chhowalla of Rutgers University in New Jersey began his talk with an overview of molybdenum and tungsten disulphides. These layered semiconductor materials have a number of interesting properties, but the key problem in using them for electronics applications has been high contact resistance with metals deposited on the semiconducting 2H phase.
Contact resistance in MoS2 can be reduced by inducing a metallic (1T) phase on 2H phase nanosheets. Hybrid field-effect transistors with 2H monolayer MoS2 as the channel, and 1T source and drain contacts, display high electron mobilities, low subthreshold swing values, high on/off ratios and drive currents, and excellent current saturation. Deposition of different metals has a limited influence on transistor performance, suggesting that the 1T-2H interface controls carrier injection into the channel. In practical terms, the MoS2 channel must be locally patterned in order to make such structures. This can be done with a PMMA mask to partially cover certain areas. The result is a contact resistance of 0.2 kiloohms per micrometre. In comparison, 2H phase MoS2 has a contact resistance of 1.12 kiloohms per micron. Jonathan Coleman from Trinity College Dublin spoke of his research group's much-lauded graphene production process known as liquid phase exfoliation, aka kitchen-blender graphene. And not only graphene, as the technique can be used to produce nanoscale flakes of a range of 2d materials. Coleman discussed the fundamentals and practicalities of liquid-phase exfoliation, focusing on such matters as control of flake size. The bulk of Coleman's presentation was given to applications, and here he identified a number of areas. These include the mechanical improvement of composite materials, strain and other motion sensors based on electrical conductivity changes, electrical energy storage and printed electronics. The next challenge for liquid exfoliation is to achieve industrial-scale production of graphene and related 2d materials. To this end, Coleman highlighted a collaboration between his research group and chemical manufacturer Thomas Swan.