Introducing flaws into liquid crystals by inserting microspheres and then controlling them with electrical fields: that, in a nutshell, is the rationale behind a method that could be exploited for a new generation of advanced materials, potentially useful for optical technologies, electronic displays and e-readers. A team of scientists (including research...
Making magnetic hot spots with pairs of silicon nanocylinders
Shining visible light on two tiny silicon cylinders, or a ‘nanodimer’, placed just 30 nanometers apart, produces resonant hot spots for both the electric and magnetic fields, finds a study by A*STAR researchers (, "Magnetic and Electric Hotspots with Silicon Nanodimers"). This phenomenon could potentially be used to connect computing devices. Two...
Harnessing sunlight more effectively with nanoparticles
A*STAR researchers have performed theoretical calculations to explain why semiconductor microspheres embedded with metal nanoparticles are so good at using sunlight to catalyze reactions (, "Interference-Induced Broadband Absorption Enhancement for Plasmonic-Metal@Semiconductor Microsphere as Visible Light Photocatalyst"). Analysis of the electric...
Subscribe to:
Posts (Atom)