Scientists at the U.S. Naval Research Laboratory (NRL) have created a new type of room-temperature tunnel device structure in which the tunnel barrier and transport channel are made of the same material, graphene. Such functionalized homoepitaxial structures provide an elegant approach for realization of graphene-based spintronic, or spin electronic,...
Scientists develop new homoepitaxial graphene tunnel barrier/transport channel spintronic device
New technique to synthesise nanostructured nanowires
A new approach to self-assemble and tailor complex structures at the nanoscale, developed by an international collaboration led by the University of Cambridge and IBM, opens opportunities to tailor properties and functionalities of materials for a wide range of semiconductor device applications. The researchers have developed a method for growing combinations...
On the way to breaking the terahertz barrier for graphene nanoelectronics
A team of scientists at the Max Planck Institute for Polymer Research (MPI-P) discovered that electrical conduction in graphene on the picosecond timescale - a picosecond being one thousandth of one billionth of a second - is governed by the same basic laws that describe the thermal properties of gases. This much simpler thermodynamic approach to the...
Subscribe to:
Posts (Atom)