Graphene brings 3-D holograms clearer and closer
Chemists' synthesis of silicon oxides opens 'new world in a grain of sand'
Gregory H. Robinson is the University of Georgia Foundation Distinguished Professor of Chemistry. The study, published April 20 in the journal ("Stabilization of elusive silicon oxides"), gives details on the first time chemists have been able to trap molecular species of silicon oxides.
Using a technique they developed in 2008, the UGA team succeeded in isolating silicon oxide fragments for the first time, at room temperature, by trapping them between stabilizing organic bases.
"In the 2008 discovery, we were able to stabilize the disilicon molecule, which previously could only be studied at extremely low temperatures on a solid argon matrix," said Gregory H. Robinson, UGA Foundation Distinguished Professor of Chemistry and the study's co-author. "We demonstrated that these organic bases could stabilize a variety of extremely reactive molecules at room temperature."
The columns, or groups, of elements of the periodic table generally share similar chemical properties. Group 14, for example, contains the element carbon, as well as silicon, the most carbon-like of all the elements. However, there are significant differences between the two. While the oxides of carbon, carbon dioxide and carbon monoxide are widely known, the molecular chemistry of corresponding silicon oxides is essentially unknown, due to the great reactivity of silicon-oxygen multiple bonds.