Nonfriction literature
Atomic-level flyovers show how radiation bombardment boosts superconductivity
UCF's new nanotechnology Master's degree is first in Florida
Artificial muscles get graphene boost
Mission possible: This device will self-destruct when heated
[embedded content]
"This work demonstrates the extent to which clever chemistries can qualitatively expand the breadth of mechanisms in transience, and therefore the range of potential applications," Rogers said. The researchers can control how fast the device degrades by tuning the thickness of the wax, the concentration of the acid, and the temperature. They can design a device to self-destruct within 20 seconds to a couple of minutes after heat is applied. The devices also can degrade in steps by encasing different parts in waxes with different melting temperatures. This gives more precise control over which parts of a device are operative, creating possibilities for sophisticated devices that can sense something in the environment and respond to it. White's group has long been concerned with device sustainability and has pioneered methods of self-healing to extend the life of materials. "We took our ideas in terms of materials regeneration and flipped it 180 degrees," White said. "If you can't keep using something, whether it's obsolete or just doesn't work anymore, we'd like to be able to bring it back to the building blocks of the material so you can recycle them when you're done, or if you can't recycle it, have it dissolve away and not sit around in landfills."New software allows simulation of molecular dynamics in large systems
Image: T. Mori (Theoretical Molecular Science Laboratory) This software promises to open a new era in computational biophysics and biochemistry by allowing scientists to make connections between molecular and cellular-level understanding and to integrate experimental knowledge with theoretical and computational insights.
Although other programs are now available that can perform MD simulations of biomolecules such as proteins, DNA, membranes, and oligosaccharides, a key advantage of GENESIS is its superior computational efficiency on massively parallel supercomputers like the K computer. Using GENESIS, more than ten thousand CPUs can be used in parallel without any reduction in the computational efficiency. This has been achieved thanks to the developments of several new algorithms, including the inverse lookup table, a new domain decomposition scheme, and the use of hybrid (OpenMP + MPI) parallelization.
In the first molecular dynamics simulation, performed by researchers at Harvard University in 1977, protein dynamics were simulated in vacuum conditions. Beginning in the 1990s, simulations of molecules in water or a lipid bilayer have been possible due to advances in MD algorithms and improvements in computer performance. To investigate biomolecular dynamics and function within more realistic cellular environments, much larger biological systems need to be simulated in milli- or microsecond time scales. GENESIS has the potential to be a good computational platform in this context, as it will help to break down the current limitations facing biological MD simulations in terms of size and time.