A mathematical model of heat flow through miniature wires could help develop thermoelectric devices that efficiently convert heat — even their own waste heat — into electricity. Developed at A*STAR, the model describes the movement of vibrations called phonons, which are responsible for carrying heat...
Thermal properties of nanowires - Follow the heat
read more "Thermal properties of nanowires - Follow the heat"
Promising thermo-magnetic data-storage technology with nanoislands
The mechanics and dynamics of heat-assisted magnetic recording (HAMR) are now better understood thanks to work by A*STAR and the National University of Singapore ("A study on dynamic heat assisted magnetization reversal mechanisms under insufficient reversal field conditions"). The experimental study will help scientists aiming to break the areal density...
Smart micelles for marine environments
‘Smart’ materials that alter their structure in response to specific, controllable stimuli have applications in various fields, from biomedical science to the oil industry. Now, A*STAR researchers have created a self-assembling polymeric material that changes its structure when moved from water to an...
Researchers achieve an unprecedented level of control over defects in liquid crystals (w/video)
Sitting with a joystick in the comfort of their chairs, scientists can play "rodeo" on a screen magnifying what is happening under their microscope. They rely on optical tweezers to manipulate an intangible ring created out of liquid crystal defects capable of attaching a microsphere to a long thin...
Skin tough
When weighing the pluses and minuses of your skin add this to the plus column: Your skin - like that of all vertebrates - is remarkably resistant to tearing. Now, a collaboration of researchers at the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC) San Diego has shown why....
Natural nanocrystals shown to strengthen concrete
Cellulose nanocrystals derived from industrial byproducts have been shown to increase the strength of concrete, representing a potential renewable additive to improve the ubiquitous construction material. s The cellulose nanocrystals (CNCs) could be refined from byproducts generated in the paper, bioenergy, agriculture and pulp industries. They are...
Subscribe to:
Posts (Atom)