'Microcombing' creates stronger, more conductive carbon nanotube films

Researchers from North Carolina State University and China’s Suzhou Institute of Nano-Science and Nano-Biotics have developed an inexpensive technique called “microcombing” to align carbon nanotubes (CNTs), which can be used to create large, pure CNT films that are stronger than any previous such films. The technique also improves the electrical conductivity...
read more "'Microcombing' creates stronger, more conductive carbon nanotube films"

Implantable neuronal electrode nanocoating good as gold

A team of researchers from Lawrence Livermore and UC Davis have found that covering an implantable neural electrode with nanoporous gold could eliminate the risk of scar tissue forming over the electrode’s surface. The team demonstrated that the nanostructure of nanoporous gold achieves close physical coupling of neurons by maintaining a high neuron-to-astrocyte...
read more "Implantable neuronal electrode nanocoating good as gold"

Graphene spintronics - from science to technology

Electronics is based on the manipulation of electrons and other charge carriers, but in addition to charge, electrons possess a property known as spin. When spin is manipulated with magnetic and electric fields, the result is a spin-polarised current that carries more information than is possible with charge alone. Spin-transport electronics, or spintronics,...
read more "Graphene spintronics - from science to technology"