Three-dimensional opto-electric integration

Three-dimensional (3D) integration of various materials on top of bulk silicon could be the best answer for cost-effectively marrying optical devices with electronics. A*STAR researchers have used this approach to create a photodetector system for optical communications on a silicon chip ("Three-dimensional (3D) monolithically integrated photodetector...
read more "Three-dimensional opto-electric integration"

Extremely repellent surfaces

A computational technique to analyze how water vapor condenses on a surface patterned with an array of tiny pillars has been co-developed by an A*STAR researcher. Calculations carried out using this technique reveal that water droplets preferentially form either on top of the pillars or in the gaps between them, depending on factors such as the height...
read more "Extremely repellent surfaces"

Discovery of a factor that determines the photocatalytic activity of titanium dioxide

The research group consisting of Assistant Professor Kenichi Ozawa in the Graduate School of Science and Engineering at the Tokyo Institute of Technology, Associate Professor Iwao Matsuda and Research Associate Susumu Yamamoto in the Institute for Solid State Physics at the University of Tokyo, and Professor Hiroshi Sakama in the Faculty of Science...
read more "Discovery of a factor that determines the photocatalytic activity of titanium dioxide"