OMICS Group invites researchers, academicians, scientists, Institutions, corporate entities, associations and students from across the world to attend the Nanotechnology Congress & Expo from 11-13 August 2015, at Frankfurt, Germany with a theme “Exploring and Acquiring the Advances in Nanotechnology”. Nanoscience and nanotechnology involves the study and application of nanoscale particles across all the other science fields, such as chemistry, biology, physics, materials science, and engineering. Today’s scientists and engineers are finding variety of ways to deliberately use Nanomaterials to take advantage of their enhanced properties such as higher strength, lighter weight, increased control of light spectrum, and greater chemical reactivity than their larger-scale counterparts. The innovation and emerging nanotechnologies have significantly reshaped the manufacturing, biotechnology, environmental and pharmaceutical markets. Nanoporous, nanotubes, nanocomposites,Nanotoxicology and nanoclays are all covered within BCC Research reports. In-depth market analysis of these technologies as well as trends, forecasts and profiles of major players prove how valuable the growth of nanotechnology has become. Efficiency of nanotechnology has led to great discoveries in prescription drug products, photonics and has had a great environmental impact in the water treatment and decreasing the amount of pollutants that deplete the environment. Nanotech-2015 offers an international platform for presenting research about marketing, exchanging ideas about it and thus, contributes to the dissemination of knowledge in marketing for the benefit of both the academia and business. It covers a broad area of physics- Nanophysics, Material Science, Smart Materials and others. It will help to gain knowledge about the recent advancements and it is of course a good opportunity to discuss various aspects of Nanotechnology Frankfurt is hosting this conference as it is the largest city in the German state of Hessen and the fifth-largest city in Germany. Frankfurt is the largest financial centre in continental Europe and ranks among the world's leading financial centers. It is home to the European Central Bank, Deutsche Bundesbank, Frankfurt Stock Exchange and several large commercial banks. The European Central Bank is the central bank of the eurozone, consisting of 18 EU member states that have adopted theeuro (€) as their common currency and sole legal tender. Major Nanotechnology Associations around the Europe including German Association of Nanotechnology, Brazilian Nanotechnology National Laboratory, International Council on Nanotechnology (ICON) , and Nano Science and Technology Institute (NSTI) have been focusing on Nanotechnolgoy research. Presence of top rated academic institutions like University of Oxford, University of Cambridge, Imperial College London, and Queens marry university also encourages the organizing committee to vote for Frankfurt as a conference venue. Nanotechnology-2015 offers an exciting opportunity to showcase the new technology, the new products of your company, and/or the service your industry may offer to a broad international audience. It covers a lot of topics and it will be a nice platform to showcase their recent researches on Nanotechnology, Material Science and other interesting topics. The organizing committee is gearing up for an exciting and informative conference program including plenary lectures, symposia, workshops on a variety of topics, poster presentations and various programs for participants from all over the world. We invite you to join us at the Nanotechnology-2015, where you will be sure to have a meaningful experience with scholars from around the world. All members of the Nanotechnology-2015 organizing committee look forward to meeting you in Frankfurt, Germany
Acquiring nanotechnology advancements to march ahead of the race
read more "Acquiring nanotechnology advancements to march ahead of the race"
Free-standing monolayers made from protein-bound gold nanoparticles
Free-standing nanoparticle films are of great interest for technical applications, such as the development of nanoelectronic devices. In the journal ("Free-Standing Gold-Nanoparticle Monolayer Film Fabricated by Protein Self-Assembly of α-Synuclein"), Korean scientists have introduced very flexible and stable monolayers of gold nanoparticles made by a self-assembly process based on protein aggregation. The films were used to coat wafers up to 10 cm in diameter. The success of this new strategy relies on a small protein called α-synuclein, which is responsible for regulation of dopamine release in the brain, among other things. Incorrectly folded forms of this protein, which aggregate into poorly soluble fibril structures, seem to be involved in the development of neurodegenerative diseases such as Parkinson’s. As devastating as this misfolding protein is to the brain, it has shown itself to be quite useful in the production of extensive films made of gold nanoparticles. To produce these new films, scientists working with Seung R. Paik (Seoul National University) first coat gold nanoparticles with α-synuclein. They then adsorb the proteins onto a polycarbonate surface that has been cleaned by treatment with oxygen plasma. The proteins bind to this surface particularly well and eventually build up to form a densely packed monolayer of gold nanoparticles that is held together through unspecific interactions between the proteins. In the final step, the polycarbonate support is dissolved away with chloroform. At the same time, this solvent also triggers the misfolding of the proteins, which allows them to aggregate tightly and specifically, giving the free-standing monolayers necessary stability – even after they are dried. In contrast to previously described methods, this technique can produce films with dimensions reaching the millimeter and centimeter range, such as a 4 inch wafer. The color of the transparent films depends on the size of the gold particles used: 10 nm particle films are bright pink, 20 nm particle films are purple, and those made from 30 nm particles are dark blue. The films are so flexible that they can be crumpled up and then smoothed out again in a liquid. They can also encase round objects, such as silica spheres, without tearing. The researchers were additionally able to use lithographically prepared surfaces to make films with patterns of holes. Sequential adsorption on the support also allowed them to make films with a color pattern made from nanoparticles of two different sizes. The scientists hope to be able to add a variety of functionalities to their films, by using magnetic nanoparticles or quantum dots, for example. Potential areas of application include electronic components, ultrathin displays, and biocompatible sensors for the in vivo observation of organs and tissues. They expect these films to be used for not only controlling cellular activity like cancer treatment, but also cell-to-machine interface in the areas of neuroscience and robotics.
New nanogel for drug delivery
Scientists are interested in using gels to deliver drugs because they can be molded into specific shapes and designed to release their payload over a specified time period. However, current versions aren’t always practical because must be implanted surgically. To help overcome that obstacle, MIT chemical engineers have designed a new type of self-healing hydrogel that could be injected through a syringe. Such gels, which can carry one or two drugs at a time, could be useful for treating cancer, macular degeneration, or heart disease, among other diseases, the researchers say. These scanning electron microscopy images, taken at different magnifications, show the structure of new hydrogels made of nanoparticles interacting with long polymer chains. (Image courtesy of the researchers) The new gel consists of a mesh network made of two components: nanoparticles made of polymers entwined within strands of another polymer, such as cellulose. “Now you have a gel that can change shape when you apply stress to it, and then, importantly, it can re-heal when you relax those forces. That allows you to squeeze it through a syringe or a needle and get it into the body without surgery,” says Mark Tibbitt, a postdoc at MIT’s Koch Institute for Integrative Cancer Research and one of the lead authors of a paper describing the gel in s on Feb. 19. Koch Institute postdoc Eric Appel is also a lead author of the paper, and the paper’s senior author is Robert Langer, the David H. Koch Institute Professor at MIT. Other authors are postdoc Matthew Webber, undergraduate Bradley Mattix, and postdoc Omid Veiseh. Heal thyself Scientists have previously constructed hydrogels for biomedical uses by forming irreversible chemical linkages between polymers. These gels, used to make soft contact lenses, among other applications, are tough and sturdy, but once they are formed their shape cannot easily be altered. The MIT team set out to create a gel that could survive strong mechanical forces, known as shear forces, and then reform itself. Other researchers have created such gels by engineering proteins that self-assemble into hydrogels, but this approach requires complex biochemical processes. The MIT team wanted to design something simpler. “We’re working with really simple materials,” Tibbitt says. “They don’t require any advanced chemical functionalization.” The MIT approach relies on a combination of two readily available components. One is a type of nanoparticle formed of PEG-PLA copolymers, first developed in Langer’s lab decades ago and now commonly used to package and deliver drugs. To form a hydrogel, the researchers mixed these particles with a polymer — in this case, cellulose. Each polymer chain forms weak bonds with many nanoparticles, producing a loosely woven lattice of polymers and nanoparticles. Because each attachment point is fairly weak, the bonds break apart under mechanical stress, such as when injected through a syringe. When the shear forces are over, the polymers and nanoparticles form new attachments with different partners, healing the gel. Using two components to form the gel also gives the researchers the opportunity to deliver two different drugs at the same time. PEG-PLA nanoparticles have an inner core that is ideally suited to carry hydrophobic small-molecule drugs, which include many chemotherapy drugs. Meanwhile, the polymers, which exist in a watery solution, can carry hydrophilic molecules such as proteins, including antibodies and growth factors. Long-term drug delivery In this study, the researchers showed that the gels survived injection under the skin of mice and successfully released two drugs, one hydrophobic and one hydrophilic, over several days. This type of gel offers an important advantage over injecting a liquid solution of drug-delivery nanoparticles: While a solution will immediately disperse throughout the body, the gel stays in place after injection, allowing the drug to be targeted to a specific tissue. Furthermore, the properties of each gel component can be tuned so the drugs they carry are released at different rates, allowing them to be tailored for different uses. The researchers are now looking into using the gel to deliver anti-angiogenesis drugs to treat macular degeneration. Currently, patients receive these drugs, which cut off the growth of blood vessels that interfere with sight, as an injection into the eye once a month. The MIT team envisions that the new gel could be programmed to deliver these drugs over several months, reducing the frequency of injections. Another potential application for the gels is delivering drugs, such as growth factors, that could help repair damaged heart tissue after a heart attack. The researchers are also pursuing the possibility of using this gel to deliver cancer drugs to kill tumor cells that get left behind after surgery. In that case, the gel would be loaded with a chemical that lures cancer cells toward the gel, as well as a chemotherapy drug that would kill them. This could help eliminate the residual cancer cells that often form new tumors following surgery. “Removing the tumor leaves behind a cavity that you could fill with our material, which would provide some therapeutic benefit over the long term in recruiting and killing those cells,” Appel says. “We can tailor the materials to provide us with the drug-release profile that makes it the most effective at actually recruiting the cells.”
Microfluidic diamond sensor
Measuring faint magnetic fields is a trillion-dollar business. Gigabytes of data, stored and quickly retrieved from chips the size of a coin, are at the heart of consumer electronics. Even higher data densities can be achieved by enhancing magnetic detection sensitivity---perhaps down to nano-tesla levels. Greater magnetic sensitivity is also useful in many scientific areas, such as the identification of biomolecules such as DNA or viruses. This research must often take place in a warm, wet environment, where clean conditions or low temperatures are not possible. JQI scientists address this concern by developing a diamond sensor that operates in a fluid environment. The sensor makes magnetic maps (with a 17 micro-tesla sensitivity) of small particles (a stand-in for actual bio-molecules) with a spatial resolution of about 50 nm. This is probably the most sensitive magnetic measurement conducted at room temperature in microfluidics. The results of the new experiment conducted by JQI scientist Edo Waks (a professor at the University of Maryland) and his associates appear in the journal ("Scanning Localized Magnetic Fields in a Microfluidic Device with a Single Nitrogen Vacancy Center") . A diamond nanocrystal (white object to the right of center) is used to map the magnetic field around a particle (red object at center). The particle floats in a shallow bath of ionic liquid. The particle can be moved about (dotted line) with great precision by making the liquid flow using voltages applied to electrodes (4 shiny rods). Inset: the NV center at the heart of the diamond nano-crystal reacts to a combination of incoming green laser light, radio-frequency waves (magenta), and the magnetism of the nearby micro-particle. If all these fields have just the right values the NV center will emit red light. The observed light provides a measure of the micro-particle’s magnetic field. (Image: Kelley/JQI) Diamond NV centers At the heart of the sensor is a tiny diamond nano-crystal. This diamond, when brought close to a magnetic particle while simultaneously being bathed in laser light and a subtle microwave signal, will fluoresce in a manner proportional to the strength of the particle’s own magnetic field. Thus light from the diamond is used to map magnetism. How does the diamond work and how is the particle maneuvered near enough to the diamond to be scanned? The diamond nanocrystal is made in the same process by which synthetic diamonds are formed, in a process called chemical vapor deposition. Some of the diamonds have tiny imperfections, including occasionally nitrogen atoms substituting for carbon atoms. Sometimes a carbon atom is missing altogether from the otherwise tightly-coordinated diamond solid structure. In those cases where the nitrogen (N) and the vacancy (V) are next to each other, an interesting optical effect can occur. The NV combination acts as a sort of artificial atom called an NV color center. If prompted by the right kind of green laser, the NV center will shine. That is, if will absorb green laser light and emit red light, one photon at a time. The NV emission rate can be altered in the presence of magnetic fields at the microscopic level. For this to happen, though, the internal energy levels of the NV center has to be just right, and this comes about when the center is exposed to signals from the radio-frequency source (shown at the edge of the figure) and the fields emitted by the nearby magnetic particle itself. The particle floats in a shallow lake of de-ionized- water based solution in a setup called a microfluidic chip. The diamond is attached firmly to the bottom of this lake. The particle moves, and is steered around the chip when electrodes positioned in the channels coax ions in the liquid into forming gentle currents. Like a ship sailing to Europe with the help of the Gulf Stream, the particle rides these currents with sub-micron control. The particle can even be maneuvered in the vertical direction by an external magnetic coil (not shown in the drawing). “We plan to use multiple diamonds in order to do complex vectorial magnetic analysis.,” says graduact student Kangmook Lim, the lead author on the publication. “We will also use floating diamonds instead of stationary, which would be very useful for scanning nano- magnetism of biological samples.”
Cheap nanostructured solar cells made with carbon quantum dots from shrimp shells
The materials chitin and chitosan found in the shells are abundant and significantly cheaper to produce than the expensive metals such as ruthenium, which is similar to platinum, that are currently used in making nanostructured solar-cells. Currently the efficiency of solar cells made with these biomass-derived materials is low but if it can be improved they could be placed in everything from wearable chargers for tablets, phones and smartwatches, to semi-transparent films over window. Researchers, from QMUL’s School of Engineering and Materials Science, used a process known as hydrothermal carbonization to create the carbon quantum dots (CQDs) from the widely and cheaply available chemicals found in crustacean shells (, "Biomass-derived Carbon Quantom Dots Sensitizers for Solid-State Nanostructured Solar Cells"). They then coat standard zinc oxide nanorods with the CQDs to make the solar cells. Dr Joe Briscoe, one of the researchers on the project, said: “This could be a great new way to make these versatile, quick and easy to produce solar cells from readily available, sustainable materials. Once we’ve improved their efficiency they could be used anywhere that solar cells are used now, particularly to charge the kinds of devices people carry with them every day. Professor Magdalena Titirici, Professor of Sustainable Materials Technology at QMUL, said: “New techniques mean that we can produce exciting new materials from organic by-products that are already easily available. Sustainable materials can be both high-tech and low-cost.” “We’ve also used biomass, in that case algae, to make the kinds of supercapacitors that can be used to store power in consumer electronics, in defibrillators and for energy recovery in vehicles.”
Subscribe to:
Posts (Atom)