Conventional superhydrophobic coatings that repel liquids by trapping air inside microscopic surface pockets tend to lose their properties when liquids are forced into those pockets. In this work ("Collapse and Reversibility of the Superhydrophobic State on Nanotextured Surfaces"), extremely water-repellant or superhydrophobic surfaces were fabricated...
Super water-repellant nanocoatings can now take the pressure
Seeing quantum motion
Consider the pendulum of a grandfather clock. If you forget to wind it, you will eventually find the pendulum at rest, unmoving. However, this simple observation is only valid at the level of classical physics—the laws and principles that appear to explain the physics of relatively large objects at human scale. However, quantum mechanics, the underlying...
A nanoengineered surface unsticks sticky water droplets
The lotus effect has inspired many types of liquid repelling surfaces, but tiny water droplets stick to lotus leaf structures. Now, researchers at Penn State have developed the first nano/micro-textured highly slippery surfaces able to outperform lotus leaf-inspired liquid repellent coatings, particularly in situations where the water is in the form...
Draw out of the predicted interatomic force
Liquid Bi shows a peculiar dispersion of the acoustic mode, which is related to the Peierls distortion in the crystalline state. These results ("Anomalous dispersion of the acoustic mode in liquid Bi") will provide valuable inspiration to researchers developing new materials in the nanotechnology field. Fig.1: Momentum dependence of excitation energy....
Electrons that stick together, superconduct together
The discovery of a surprising feature of superconductivity in an unconventional superconductor by a RIKEN-led research team provides clues about the superconducting mechanism in this material and thus could aid the search for room-temperature superconductors ("Emergent loop-nodal s+--wave superconductivity in CeCu2Si2: Similarities to the iron-based...
Electrons take a phonon bath
In fundamental physics, it is relatively easy to describe the motion of a single moving particle, but it is much more challenging to develop a reliable theoretical description of a particle such as an electron moving in an environment where it interacts with many other particles. Now, Naoto Nagaosa and Andrey Mishchenko of the RIKEN Center for Emergent...
A new nanoparticle technique to make drugs more soluble
Before Ibuprofen can relieve your headache, it has to dissolve in your bloodstream. The problem is Ibuprofen, in its native form, isn’t particularly soluble. Its rigid, crystalline structures — the molecules are lined up like soldiers at roll call — make it hard to dissolve in the bloodstream. To overcome...
Successful boron-doping of graphene nanoribbon
Physicists at the University of Basel succeed in synthesizing boron-doped graphene nanoribbons and characterizing their structural, electronic and chemical properties. The modified material could potentially be used as a sensor for the ecologically damaging nitrogen oxides, scientists report in the latest issue of ("Atomically controlled substitutional...
With silicon pushed to its limits, what will power the next electronics revolution?
The semiconducting silicon chip launched the revolution of electronics and computerisation that has made life in the opening years of the 21st century scarcely recognisable from the start of the last. Silicon integrated circuits (IC) underpin practically everything we take for granted now in our interconnected, digital world: controlling the systems...
New theory leads to radiationless revolution
Physicists have found a radical new way confine electromagnetic energy without it leaking away, akin to throwing a pebble into a pond with no splash. The theory could have broad ranging applications from explaining dark matter to combating energy losses in future technologies. However, it appears to contradict a fundamental tenet of electrodynamics,...
Nanoengineered, 3D-printed swiming microrobots
Nanoengineers at the University of California, San Diego used an innovative 3D printing technology they developed to manufacture multipurpose fish-shaped microrobots -- called microfish -- that swim around efficiently in liquids, are chemically powered by hydrogen peroxide and magnetically controlled. These proof-of-concept synthetic microfish will...
More efficient chips based on plasmonics are a step closer
By using the tip of a scanning tunneling microscope (STM), A*STAR researchers and their collaborators have generated electromagnetic waves known as surface plasmon polaritons in a gold grating and demonstrated that the direction of travel of these waves can be controlled ("Electrically-excited surface plasmon polaritons with directionality control.")....
Finding 'Goldilocks' nanoparticles for catalysis
A*STAR scientists have used first-principles computer simulations to explain why small platinum nanoparticles are less effective catalysts than larger ones ("Platinum nanoparticle during electrochemical hydrogen evolution: Adsorbate distribution, active reaction species, and size effect"). First-principles simulations reveal distribution of absorbed...
Probing pattern formation and dynamics of nanoscale 'swarms'
Experimental evidence proves the inadequacy of widely accepted explanations, according to collaborators at the Technical University of Munich (TUM), Ludwig-Maximilians-Universität München (LMU), and the Max Planck Institute for the Physics of Complex Systems (MPI-PKS). Living matter, which consists largely of diverse polymeric structures assembled...
Another milestone in hybrid artificial photosynthesis
A team of researchers at the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) developing a bioinorganic hybrid approach to artificial photosynthesis have achieved another milestone. Having generated quite a buzz with their hybrid system of semiconducting nanowires and bacteria that used electrons to synthesize...
Self-assembled aromatic molecular stacks, towards modular molecular electronic components
Being able to effectively tune the electron-transport properties of a single-molecule has been a long-standing issue towards the crystallization of molecular electronics, where individual molecules mimic the behavior of common electronic components as a true alternative to conventional silicon devices. To functionalize electron transport properties,...
How long does it take an electron to tunnel?
How long does it take an atom to absorb a photon and loose an electron? And what if not one but many photons are needed for ionization? How much time would absorption of many photons take? These questions lie at the core of attosecond spectroscopy, which aims to resolve electronic motion at its natural time scale. Ionization in strong infrared fields...
How to flow ultrathin water layers - a liquid flatjet for X-ray spectroscopy
Element-specific x-ray methods play a key role in determining the atomic structure and composition of matter and functional materials. X-ray spectroscopy is sensitive to the oxidation state, the distances, coordination number and species of the atoms immediately surrounding the selected element. A large variety of x-ray spectroscopic techniques have...
Registration of chemicals: the Belgian register of nanomaterials
Contrary to the general opinion, companies established in Belgium have much more extensive obligations than mere compliance with REACH – the European legislation on registration of chemical substances. Indeed, in Belgium a national register for nanomaterials will enter into force on 1st January 2016....
Thin films offer promise for ferroelectric devices
Ferroelectric materials have applications in next-generation electronics devices from optoelectronic modulators and random access memory to piezoelectric transducers and tunnel junctions. Now researchers at Tokyo Institute of Technology report insights into the properties of epitaxial hafnium-oxide-based (HfO2-based) thin films, confirming a stable...
Smart nanofiber dressings speed healing of chronic wounds
Researchers at Swinburne University of Technology are developing innovative nanofibre meshes that might draw bacteria out of wounds and speed up the healing process. The research is the focus of Swinburne PhD candidate Martina Abrigo, who received the university’s Chancellor's Research Scholarship to undertake this work. Martina Abrigo Using a technique...
Novel nanostructures for efficient long-range energy transport
The conversion of sunlight into electricity at low cost becomes increasingly important to meet the world's fast growing energy consumption. This task requires the development of new device concepts, in which particularly the transport of light-generated energy with minimal losses is a key aspect. An interdisciplinary group of researchers from the Bavarian...
Laser-burned graphene a possible replacement for platinum as catalyst
Rice University chemists who developed a unique form of graphene have found a way to embed metallic nanoparticles that turn the material into a useful catalyst for fuel cells and other applications. Laser-induced graphene, created by the Rice lab of chemist James Tour last year, is a flexible film with a surface of porous graphene made by exposing...
Using nanoscopic pores to investigate protein structure
University of Pennsylvania researchers have made strides toward a new method of gene sequencing a strand of DNA's bases are read as they are threaded through a nanoscopic hole. In a new study, they have shown that this technique can also be applied to proteins as way to learn more about their structure. Existing methods for this kind of analysis are...
Researchers reveal new, stable 2D materials
Dozens of new two-dimensional materials similar to graphene are now available, thanks to research from University of Manchester scientists. These 2D crystals are capable of delivering designer materials with revolutionary new properties. The problem has been that the vast majority of these atomically...
Researchers announce discovery in fundamental physics
When the transistor was invented in 1947 at Bell Labs, few could have foreseen the future impact of the device. This fundamental development in science and engineering was critical to the invention of handheld radios, led to modern computing, and enabled technologies such as the smartphone. This is one of the values of basic research. In a similar...
Subscribe to:
Posts (Atom)